Zhang Chen1,
Zhong Li1,
Liangchen Song2,
Lele Chen1,
Jingyi Yu3,
Junsong Yuan2,
Yi Xu1
1OPPO US Research Center, 2University at Buffalo, 3ShanghaiTech University
Project Page | Paper | Video
This repo is an official PyTorch implementation for the ICCV 2023 paper "NeuRBF: A Neural Fields Representation with Adaptive Radial Basis Functions". Our work presents a novel type of neural fields with high representation accuracy and model compactness. The repo contains the codes for image fitting, SDF fitting and neural radiance fields.
git clone https://github.com/oppo-us-research/NeuRBF.git
cd NeuRBF
# Create conda environment
conda create -n neurbf python=3.9 -y
conda activate neurbf
# Install CuPy
pip install cupy-cuda11x
python -m cupyx.tools.install_library --cuda 11.x --library cutensor
python -m cupyx.tools.install_library --cuda 11.x --library cudnn
python -m cupyx.tools.install_library --cuda 11.x --library nccl
# Install PyTorch
pip install torch==2.0.1+cu117 torchvision==0.15.2+cu117 --index-url https://download.pytorch.org/whl/cu117
# For image/SDF fitting and NeRF task on Synthetic NeRF dataset
pip install einops matplotlib kornia imageio imageio-ffmpeg opencv-python pysdf PyMCubes trimesh plotly scipy GPUtil scikit-image scikit-learn pykdtree commentjson tqdm configargparse lpips tensorboard torch-ema ninja tensorboardX numpy pandas rich packaging scipy torchmetrics jax pillow plyfile omegaconf
# For NeRF task on LLFF dataset
pip install jax tqdm pillow opencv-python pandas lpips imageio torchmetrics scikit-image tensorboard matplotlib
pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
Build torch-ngp extension (for image/SDF fitting)
cd thirdparty/torch_ngp/gridencoder
pip install .
cd ../../../
- Ubuntu 18.04 with PyTorch 1.13.0 & CUDA 11.6 on RTX A6000.
- Ubuntu 18.04 with PyTorch 2.0.1 & CUDA 11.7 on RTX A6000.
- Ubuntu 18.04 with PyTorch 2.0.1 & CUDA 11.7 on RTX 3090.
- Windows 11 with PyTorch 2.0.1 & CUDA 11.7 on RTX 3080 Ti 16G.
Download an example pluto image. Put it in data/img
and rename to pluto.png
. Then run
python main.py --config configs/img.py --path ./data/img/pluto.png --alias pluto
The result and tensorboard log will be located in log/img
. To adjust model size, you can specify the value of --log2_hashmap_size_ref
argument.
NOTE: To reduce GPU memory usage, you can add --ds_device cpu
to the above command. This will put some data on CPU instead of GPU, but will also make training slower.
Download the validation set of the DIV2K dataset and put it in data/img/div2k
. The path to each image should be data/img/div2k/DIV2K_valid_HR/xxxx.png
. Then run
python main_img_div2k.py
The script will fit each image separately and the results will be stored in log/img_div2k
.
Download an example armadillo mesh of the Stanford 3D Scanning Repository. Unzip it, put it in data/sdf
, and rename to armadillo.ply
.
Run the following preprocessing script, which normalizes the mesh and sample additional evaluation points.
python preproc_mesh.py --path ./data/sdf/armadillo.ply
Then run
python main.py --config configs/sdf.py --path ./data/sdf/armadillo_nrml.obj --alias armadillo
The result and tensorboard log will be located in log/sdf
. To adjust model size, you can specify the value of --log2_hashmap_size_ref
argument.
NOTE: To reduce GPU memory usage, you can similarly add --ds_device cpu
to the above command.
Download the dataset and unzip to data
. For example, the path to the lego scene should be data/nerf_synthetic/lego
.
For training, use the following command
python main_nerf.py --config_init configs/nerf_tensorf/nerf_synthetic_init.py --config configs/nerf_tensorf/nerf_synthetic.py --data_name lego
It will first distill scene information to initialize RBF position and shape parameters, and then train the full model. The result and tensorboard log will be located in log/nerf_synthetic
. Change --data_name
to run on other scenes.
NOTE: To reduce GPU memory usage, you can add --batch_size_init 2048
(tested working on RTX 3090 24G). The number 2048
can be further lowered if needed.
To render images using a trained model, run
python main_nerf.py --config configs/nerf_tensorf/nerf_synthetic.py --data_name lego --ckpt [path_to_checkpoint] --render_only 1 --[what_to_render] 1
where [path_to_checkpoint]
is the path to the checkpoint file and [what_to_render]
can be render_test
or render_train
. Note that the training command already conducts render_test
at the end of training.
To extract mesh from a trained model, run
python main_nerf.py --config configs/nerf_tensorf/nerf_synthetic.py --data_name lego --ckpt [path_to_checkpoint] --export_mesh 1
Download the dataset and unzip to data
. For example, the path to the room scene should be data/nerf_llff_data/room
.
For training, use the following command
python main_nerf_kplanes.py --config_init configs/nerf_kplanes/llff_init.py --config configs/nerf_kplanes/llff.py --data_name room
It will first distill scene information to initialize RBF position and shape parameters, and then train the full model. The result and tensorboard log will be located in log/llff
. Change --data_name
to run on other scenes.
To render a spiral-path video using a trained model, run
python main_nerf_kplanes.py --config configs/nerf_kplanes/llff.py --log-dir [model_folder] --render-only
where [model_folder]
is the path to the folder that contains the trained model.
We sincerely thank the authors of the following repos, whose work has been referenced in our released codes: torch-ngp, TensoRF, nrff, K-Planes, MINER_pl, and siren.
If you find our work useful, please consider citing:
@inproceedings{chen2023neurbf,
author = {Chen, Zhang and Li, Zhong and Song, Liangchen and Chen, Lele and Yu, Jingyi and Yuan, Junsong and Xu, Yi},
title = {NeuRBF: A Neural Fields Representation with Adaptive Radial Basis Functions},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2023},
pages = {4182-4194}
}