-
Notifications
You must be signed in to change notification settings - Fork 17
/
main_nerf.py
427 lines (343 loc) · 17.5 KB
/
main_nerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
# Modified from https://github.com/apchenstu/TensoRF/blob/main/train.py
import os
from tqdm.auto import tqdm
from thirdparty.tensorf.opt import config_parser
import json, random
from thirdparty.tensorf.renderer import *
from thirdparty.tensorf.utils import *
from torch.utils.tensorboard import SummaryWriter
import datetime
from thirdparty.tensorf.dataLoader import dataset_dict
import sys
import pprint
import numpy as np
import torch
from thirdparty.tensorf.models.tensorBase import count_params
import thirdparty.tensorf.models.tensorBase
import thirdparty.tensorf.models.tensoRF
import thirdparty.nrff.nrff
import nerf_tensorf.network
import util_misc
import time
import pprint
gpu = util_misc.select_devices('1#', force_reselect=True, excludeID=[])[0]
if gpu is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu)
print(f"CUDA_VISIBLE_DEVICES set to {gpu}")
else:
print(f"Did not set GPU.")
temp = torch.ones([100, 100], device=0)
del temp
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
renderer = OctreeRender_trilinear_fast
class SimpleSampler:
def __init__(self, total, batch):
self.total = total
self.batch = batch
self.curr = total
self.ids = None
def nextids(self):
self.curr+=self.batch
if self.curr + self.batch > self.total:
self.ids = torch.LongTensor(np.random.permutation(self.total))
self.curr = 0
return self.ids[self.curr:self.curr+self.batch]
@torch.no_grad()
def load_model_from_ckpt(ckpt_path, model_name):
ckpt = torch.load(ckpt_path, map_location=device)
kwargs = ckpt['kwargs']
kwargs.update({'device': device})
if 'args' in kwargs and 'rbf_config' in kwargs['args']:
kwargs['args']['rbf_config']['init_rbf'] = False
tensorf = eval(model_name)(**kwargs)
tensorf.load(ckpt)
tensorf.to(device)
return tensorf
@torch.no_grad()
def export_mesh(args):
tensorf = load_model_from_ckpt(args.ckpt, args.model_name)
alpha,_ = tensorf.getDenseAlpha()
convert_sdf_samples_to_ply(alpha.cpu(), f'{args.ckpt[:-3]}.ply',bbox=tensorf.aabb.cpu(), level=0.005)
@torch.no_grad()
def render_test(args):
# init dataset
dataset = dataset_dict[args.dataset_name]
test_dataset = dataset(args.datadir, split='test', downsample=args.downsample_train, is_stack=True)
white_bg = test_dataset.white_bg
ndc_ray = args.ndc_ray
tensorf = load_model_from_ckpt(args.ckpt, args.model_name)
logfolder = os.path.dirname(args.ckpt)
if args.render_train:
os.makedirs(f'{logfolder}/imgs_train_all', exist_ok=True)
train_dataset = dataset(args.datadir, split='train', downsample=args.downsample_train, is_stack=True)
PSNRs_train, _, _, _ = evaluation(
train_dataset,tensorf, args, renderer, f'{logfolder}/imgs_train_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device)
print(f'======> {logfolder} train all psnr: {np.mean(PSNRs_train)} <========================')
if args.render_test:
os.makedirs(f'{logfolder}/imgs_test_all', exist_ok=True)
evaluation(test_dataset, tensorf, args, renderer, f'{logfolder}/imgs_test_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device)
if args.render_path:
c2ws = test_dataset.render_path
os.makedirs(f'{logfolder}/imgs_path_all', exist_ok=True)
evaluation_path(test_dataset,tensorf, c2ws, renderer, f'{logfolder}/imgs_path_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device)
def reconstruction(args, init_data=None):
if args.add_timestamp:
logfolder = f'{args.basedir}/{args.expname}{datetime.datetime.now().strftime("-%Y%m%d-%H%M%S")}'
else:
logfolder = f'{args.basedir}/{args.expname}'
os.makedirs(logfolder, exist_ok=True)
# init dataset
dataset = dataset_dict[args.dataset_name]
train_dataset = dataset(args.datadir, split='train', downsample=args.downsample_train, is_stack=False)
test_dataset = dataset(args.datadir, split='test', downsample=args.downsample_train, is_stack=True)
white_bg = train_dataset.white_bg
near_far = train_dataset.near_far
ndc_ray = args.ndc_ray
# init resolution
upsamp_list = args.upsamp_list
update_AlphaMask_list = args.update_AlphaMask_list
n_lamb_sigma = args.n_lamb_sigma
n_lamb_sh = args.n_lamb_sh
# init log file
os.makedirs(f'{logfolder}/imgs_vis', exist_ok=True)
os.makedirs(f'{logfolder}/imgs_rgba', exist_ok=True)
os.makedirs(f'{logfolder}/rgba', exist_ok=True)
summary_writer = SummaryWriter(logfolder)
# init parameters
aabb = train_dataset.scene_bbox.to(device)
reso_cur = N_to_reso(args.N_voxel_init, aabb)
reso_real_cur = N_to_reso(args.N_voxel_real_init, aabb)
nSamples = min(args.nSamples, cal_n_samples(reso_cur,args.step_ratio))
t = time.time()
if args.ckpt is not None:
tensorf = load_model_from_ckpt(args.ckpt, args.model_name)
else:
tensorf = eval(args.model_name)(aabb, reso_cur, device,
density_n_comp=n_lamb_sigma, appearance_n_comp=n_lamb_sh, app_dim=args.data_dim_color, near_far=near_far,
shadingMode=args.shadingMode,
alphaMask_thres=args.alpha_mask_thre, rayMarch_weight_thres=args.rm_weight_mask_thre,
density_shift=args.density_shift, distance_scale=args.distance_scale,
pos_pe=args.pos_pe, view_pe=args.view_pe, fea_pe=args.fea_pe, featureC=args.featureC, step_ratio=args.step_ratio, fea2denseAct=args.fea2denseAct,
args=args, gridSize_real=reso_real_cur, init_data=init_data)
tensorf.to(device)
torch.cuda.synchronize()
t_init = time.time() - t
n_params = count_params(tensorf)
grad_vars = tensorf.get_optparam_groups(args.lr_init, args.lr_basis)
if args.lr_decay_iters > 0:
lr_factor = args.lr_decay_target_ratio**(1/args.lr_decay_iters)
else:
args.lr_decay_iters = args.n_iters
lr_factor = args.lr_decay_target_ratio**(1/args.n_iters)
print("lr decay", args.lr_decay_target_ratio, args.lr_decay_iters)
optimizer = torch.optim.Adam(grad_vars, betas=(0.9,0.99))
#linear in logrithmic space
N_voxel_list = (torch.round(torch.exp(torch.linspace(np.log(args.N_voxel_init), np.log(args.N_voxel_final), len(upsamp_list)+1))).long()).tolist()[1:]
N_voxel_real_list = (torch.round(torch.exp(torch.linspace(np.log(args.N_voxel_real_init), np.log(args.N_voxel_real_final), len(upsamp_list)+1))).long()).tolist()[1:]
torch.cuda.empty_cache()
PSNRs,PSNRs_test = [],[0]
batch_size = args.batch_size_init
allrays, allrgbs = train_dataset.all_rays, train_dataset.all_rgbs
if not args.ndc_ray:
allrays, allrgbs = tensorf.filtering_rays(allrays, allrgbs, bbox_only=True)
trainingSampler = SimpleSampler(allrays.shape[0], batch_size)
Ortho_reg_weight = args.Ortho_weight
print("initial Ortho_reg_weight", Ortho_reg_weight)
L1_reg_weight = args.L1_weight_inital
print("initial L1_reg_weight", L1_reg_weight)
TV_weight_density, TV_weight_app = args.TV_weight_density, args.TV_weight_app
tvreg = TVLoss()
print(f"initial TV_weight density: {TV_weight_density} appearance: {TV_weight_app}")
scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
t_train = 0
pbar = tqdm(range(args.n_iters), miniters=args.progress_refresh_rate, file=sys.stdout)
for iteration in pbar:
t = time.time()
ray_idx = trainingSampler.nextids()
rays_train, rgb_train = allrays[ray_idx], allrgbs[ray_idx].to(device)
optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=args.fp16):
rgb_map, alphas_map, depth_map, weights, others = renderer(rays_train, tensorf, chunk=batch_size,
N_samples=nSamples, white_bg = white_bg, ndc_ray=ndc_ray, device=device, is_train=True)
total_loss = torch.mean((rgb_map - rgb_train) ** 2)
loss = total_loss.detach().item()
# loss
if others['normals'] is not None and args.Ro_weight > 0:
Ro = torch.sum(others['normals'] * others['valid_viewdirs'], dim=-1)
Ro = F.relu(Ro).pow(2) * others['valid_weights']
Ro = Ro.mean()
loss_Ro = args.Ro_weight * Ro
total_loss += loss_Ro
summary_writer.add_scalar('train/reg_Ro', loss_Ro.detach().item(), global_step=iteration)
if Ortho_reg_weight > 0:
loss_reg = tensorf.vector_comp_diffs()
total_loss += Ortho_reg_weight*loss_reg
summary_writer.add_scalar('train/reg', loss_reg.detach().item(), global_step=iteration)
if L1_reg_weight > 0:
loss_reg_L1 = tensorf.density_L1()
total_loss += L1_reg_weight*loss_reg_L1
summary_writer.add_scalar('train/reg_l1', loss_reg_L1.detach().item(), global_step=iteration)
if TV_weight_density>0:
TV_weight_density *= lr_factor
loss_tv = tensorf.TV_loss_density(tvreg) * TV_weight_density
total_loss = total_loss + loss_tv
summary_writer.add_scalar('train/reg_tv_density', loss_tv.detach().item(), global_step=iteration)
if TV_weight_app>0:
TV_weight_app *= lr_factor
loss_tv = tensorf.TV_loss_app(tvreg)*TV_weight_app
total_loss = total_loss + loss_tv
summary_writer.add_scalar('train/reg_tv_app', loss_tv.detach().item(), global_step=iteration)
if args.fp16:
scaler.scale(total_loss).backward()
scaler.step(optimizer)
scaler.update()
else:
total_loss.backward()
optimizer.step()
torch.cuda.synchronize()
t_train += time.time() - t
PSNRs.append(-10.0 * np.log(loss) / np.log(10.0))
summary_writer.add_scalar('train/PSNR', PSNRs[-1], global_step=iteration)
summary_writer.add_scalar('train/mse', loss, global_step=iteration)
summary_writer.add_scalar('train/stepSize', tensorf.stepSize, global_step=iteration)
summary_writer.add_scalar('train/nSamples', tensorf.nSamples, global_step=iteration)
# Update lr
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * lr_factor
# Print the current values of the losses.
if iteration % args.progress_refresh_rate == 0:
pbar.set_description(
f'Iteration {iteration:05d}:'
+ f' train_psnr = {float(np.mean(PSNRs)):.2f}'
+ f' test_psnr = {float(np.mean(PSNRs_test)):.2f}'
+ f' mse = {loss:.6f}'
)
PSNRs = []
if iteration % args.vis_every == args.vis_every - 1 and args.N_vis!=0:
PSNRs_test, _, _, _ = evaluation(
test_dataset,tensorf, args, renderer, f'{logfolder}/imgs_vis/', N_vis=args.N_vis,
prtx=f'{iteration:06d}_', N_samples=nSamples, white_bg = white_bg, ndc_ray=ndc_ray,
compute_extra_metrics=False, save_img=args.save_img, save_video=args.save_video)
summary_writer.add_scalar('test/psnr', np.mean(PSNRs_test), global_step=iteration)
t = time.time()
if iteration in update_AlphaMask_list:
if reso_cur[0] * reso_cur[1] * reso_cur[2]<256**3:# update volume resolution
reso_mask = reso_cur
new_aabb = tensorf.updateAlphaMask(tuple(reso_mask))
do_shrink = True
if args.shrink_0:
do_shrink = iteration == update_AlphaMask_list[0]
if do_shrink:
tensorf.shrink(new_aabb)
L1_reg_weight = args.L1_weight_rest
print("continuing L1_reg_weight", L1_reg_weight)
if not args.ndc_ray and iteration == update_AlphaMask_list[1]:
# filter rays outside the bbox
allrays,allrgbs = tensorf.filtering_rays(allrays,allrgbs)
batch_size = args.batch_size
trainingSampler = SimpleSampler(allrgbs.shape[0], batch_size)
if iteration in upsamp_list:
n_voxels = N_voxel_list.pop(0)
reso_cur = N_to_reso(n_voxels, tensorf.aabb)
nSamples = min(args.nSamples, cal_n_samples(reso_cur,args.step_ratio))
n_voxels_real = N_voxel_real_list.pop(0)
reso_real_cur = N_to_reso(n_voxels_real, tensorf.aabb)
if args.scale_reso:
reso_real_cur = scale_reso(reso_real_cur, n_voxels_real)
tensorf.upsample_volume_grid(reso_cur, reso_real_cur)
if args.lr_upsample_reset:
print("reset lr to initial")
lr_scale = 1 #0.1 ** (iteration / args.n_iters)
else:
lr_scale = args.lr_decay_target_ratio ** (iteration / args.n_iters)
grad_vars = tensorf.get_optparam_groups(args.lr_init*lr_scale, args.lr_basis*lr_scale)
optimizer = torch.optim.Adam(grad_vars, betas=(0.9, 0.99))
if args.no_upsample:
if iteration == upsamp_list[0]:
batch_size = args.batch_size
trainingSampler = SimpleSampler(allrgbs.shape[0], batch_size)
torch.cuda.synchronize()
t_train += time.time() - t
init_data = tensorf.step_after_iter(iteration + 1)
if init_data is not None:
return init_data
n_params = count_params(tensorf, False)
for k, v in n_params.items():
summary_writer.add_scalar(f'n_params/{k}', v, global_step=iteration)
summary_writer.add_scalar(f'time/train', t_train, global_step=iteration)
summary_writer.add_scalar(f'time/init', t_init, global_step=iteration)
summary_writer.add_scalar(f'time/total', t_init + t_train, global_step=iteration)
if args.render_train:
os.makedirs(f'{logfolder}/imgs_train_all', exist_ok=True)
train_dataset = dataset(args.datadir, split='train', downsample=args.downsample_train, is_stack=True)
PSNRs_train, _, _, _ = evaluation(
train_dataset,tensorf, args, renderer, f'{logfolder}/imgs_train_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device,
save_img=args.save_img, save_video=args.save_video)
print(f'======> train all psnr: {np.mean(PSNRs_train)} <========================')
if args.render_test:
os.makedirs(f'{logfolder}/imgs_test_all', exist_ok=True)
PSNRs_test, ssims_test, l_vgg_test, l_alex_test = evaluation(
test_dataset, tensorf, args, renderer, f'{logfolder}/imgs_test_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device,
save_img=args.save_img, save_video=args.save_video)
summary_writer.add_scalar('test/psnr_all', np.mean(PSNRs_test), global_step=iteration)
summary_writer.add_scalar('test/ssim_all', np.mean(ssims_test), global_step=iteration)
summary_writer.add_scalar('test/lpips_vgg_all', np.mean(l_vgg_test), global_step=iteration)
summary_writer.add_scalar('test/lpips_alex_all', np.mean(l_alex_test), global_step=iteration)
print(f'======> test all psnr: {np.mean(PSNRs_test)} <========================')
if args.render_path:
c2ws = test_dataset.render_path
print('========>',c2ws.shape)
os.makedirs(f'{logfolder}/imgs_path_all', exist_ok=True)
evaluation_path(test_dataset,tensorf, c2ws, renderer, f'{logfolder}/imgs_path_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device)
n_params = count_params(tensorf, False)
print({args.expname})
if args.save_ckpt:
tensorf.save(f'{logfolder}/ckpt.th')
stats_t = {'t_init': t_init, 't_train': t_train, 't_total': t_init + t_train}
stats_misc = {'n_iter': args.n_iters, 'batch_size': args.batch_size, 'n_param': n_params}
print(stats_t)
print(stats_misc)
if args.render_test:
stats_metric = {'psnr': np.mean(PSNRs_test), 'ssim': np.mean(ssims_test), 'lpips_vgg': np.mean(l_vgg_test), 'lpips_alex': np.mean(l_alex_test)}
print(stats_metric)
save_fn = os.path.join(logfolder, 'stats')
with open(f'{save_fn}.txt', 'w') as f:
pprint.pprint(stats_t, f, sort_dicts=False)
pprint.pprint(stats_misc, f, sort_dicts=False)
if args.render_test:
pprint.pprint(stats_metric, f, sort_dicts=False)
if __name__ == '__main__':
torch.set_default_dtype(torch.float32)
torch.manual_seed(20211202)
np.random.seed(20211202)
args = config_parser()
pprint.pprint(args)
print(args.expname)
if args.export_mesh:
export_mesh(args)
elif args.render_only:
if args.render_train or args.render_test or args.render_path:
render_test(args)
else:
init_data = None
if args.config_init is not None:
print('Get init data...')
args = config_parser(mode='config_init')
pprint.pprint(args)
print(args.expname)
if os.path.exists(args.rbf_config.init_data_fp):
init_data = torch.load(args.rbf_config.init_data_fp)
else:
init_data = reconstruction(args)
torch.cuda.empty_cache()
print('Training...')
args = config_parser()
pprint.pprint(args)
print(args.expname)
reconstruction(args, init_data)