-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSparseVector.java
479 lines (397 loc) · 12.2 KB
/
SparseVector.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package no.uib.cipr.matrix.sparse;
import java.util.Iterator;
import no.uib.cipr.matrix.AbstractVector;
import no.uib.cipr.matrix.DenseVector;
import no.uib.cipr.matrix.Matrices;
import no.uib.cipr.matrix.Vector;
import no.uib.cipr.matrix.VectorEntry;
/**
* Sparse vector
*/
public class SparseVector extends AbstractVector implements ISparseVector {
/**
* Data
*/
double[] data;
/**
* Indices to data
*/
int[] index;
/**
* How much has been used
*/
int used;
/**
* Constructor for SparseVector.
*
* @param size
* Size of the vector
* @param nz
* Initial number of non-zeros
*/
public SparseVector(int size, int nz) {
super(size);
data = new double[nz];
index = new int[nz];
}
/**
* Constructor for SparseVector, and copies the contents from the supplied
* vector.
*
* @param x
* Vector to copy from
* @param deep
* True if a deep copy is to be made. If the copy is shallow,
* <code>x</code> must be a <code>SparseVector</code>
*/
public SparseVector(Vector x, boolean deep) {
super(x);
if (deep) {
int nz = Matrices.cardinality(x);
data = new double[nz];
index = new int[nz];
set(x);
} else {
SparseVector xs = (SparseVector) x;
data = xs.getData();
index = xs.getIndex();
used = xs.getUsed();
}
}
/**
* Constructor for SparseVector, and copies the contents from the supplied
* vector. Zero initial pre-allocation
*
* @param x
* Vector to copy from. A deep copy is made
*/
public SparseVector(Vector x) {
this(x, true);
}
/**
* Constructor for SparseVector. Zero initial pre-allocation
*
* @param size
* Size of the vector
*/
public SparseVector(int size) {
this(size, 0);
}
/**
* Constructor for SparseVector
*
* @param size
* Size of the vector
* @param index
* Indices of the vector
* @param data
* Entries of the vector
* @param deep
* True for a deep copy. For shallow copies, the given indices
* will be used internally
*/
public SparseVector(int size, int[] index, double[] data, boolean deep) {
super(size);
if (index.length != data.length)
throw new IllegalArgumentException("index.length != data.length");
if (deep) {
used = index.length;
this.index = index.clone();
this.data = data.clone();
} else {
this.index = index;
this.data = data;
used = index.length;
}
}
/**
* Constructor for SparseVector
*
* @param size
* Size of the vector
* @param index
* The vector indices are copies from this array
* @param data
* The vector entries are copies from this array
*/
public SparseVector(int size, int[] index, double[] data) {
this(size, index, data, true);
}
@Override
public void set(int index, double value) {
check(index);
// TODO: should we check against zero when setting zeros?
int i = getIndex(index);
data[i] = value;
}
@Override
public void add(int index, double value) {
check(index);
int i = getIndex(index);
data[i] += value;
}
@Override
public double get(int index) {
check(index);
int in = Arrays.binarySearch(this.index, index, 0, used);
if (in >= 0)
return data[in];
return 0;
}
/**
* Tries to find the index. If it is not found, a reallocation is done, and
* a new index is returned.
*/
private int getIndex(int ind) {
// Try to find column index
int i = Arrays.binarySearchGreater(index, ind, 0, used);
// Found
if (i < used && index[i] == ind)
return i;
int[] newIndex = index;
double[] newData = data;
// Check available memory
if (++used > data.length) {
// If zero-length, use new length of 1, else double the bandwidth
int newLength = data.length != 0 ? data.length << 1 : 1;
// Enforce the maximum size.
newLength = Math.min(newLength, this.size);
// Copy existing data into new arrays
newIndex = new int[newLength];
newData = new double[newLength];
System.arraycopy(index, 0, newIndex, 0, i);
System.arraycopy(data, 0, newData, 0, i);
}
// All ok, make room for insertion
System.arraycopy(index, i, newIndex, i + 1, used - i - 1);
System.arraycopy(data, i, newData, i + 1, used - i - 1);
// Put in new structure
newIndex[i] = ind;
newData[i] = 0.;
// Update pointers
index = newIndex;
data = newData;
// Return insertion index
return i;
}
@Override
public SparseVector copy() {
return new SparseVector(this);
}
@Override
public SparseVector zero() {
java.util.Arrays.fill(data, 0);
used = 0;
return this;
}
@Override
public SparseVector scale(double alpha) {
// Quick return if possible
if (alpha == 0)
return zero();
else if (alpha == 1)
return this;
for (int i = 0; i < used; ++i)
data[i] *= alpha;
return this;
}
@Override
public double dot(Vector y) {
if (!(y instanceof DenseVector))
return super.dot(y);
checkSize(y);
double[] yd = ((DenseVector) y).getData();
double ret = 0;
for (int i = 0; i < used; ++i)
ret += data[i] * yd[index[i]];
return ret;
}
@Override
protected double norm1() {
double sum = 0;
for (int i = 0; i < used; ++i)
sum += Math.abs(data[i]);
return sum;
}
@Override
protected double norm2() {
double norm = 0;
for (int i = 0; i < used; ++i)
norm += data[i] * data[i];
return Math.sqrt(norm);
}
@Override
protected double norm2_robust() {
double scale = 0, ssq = 1;
for (int i = 0; i < used; ++i) {
if (data[i] != 0) {
double absxi = Math.abs(data[i]);
if (scale < absxi) {
ssq = 1 + ssq * Math.pow(scale / absxi, 2);
scale = absxi;
} else
ssq = ssq + Math.pow(absxi / scale, 2);
}
}
return scale * Math.sqrt(ssq);
}
@Override
protected double normInf() {
double max = 0;
for (int i = 0; i < used; ++i)
max = Math.max(Math.abs(data[i]), max);
return max;
}
/**
* Returns the internal value array. This array may contain extra elements
* beyond the number that are used. If it is greater than the number used,
* the remaining values will be 0. Since this vector can resize its internal
* data, if it is modified, this array may no longer represent the internal
* state.
*
* @return The internal array of values.
*/
public double[] getData() {
return data;
}
/**
* Returns the used indices
*/
public int[] getIndex() {
if (used == index.length)
return index;
// could run compact, or return subarray
// compact();
int[] indices = new int[used];
System.arraycopy(index, 0, indices, 0, used);
return indices;
}
/**
* Gets the raw internal index array. This array may contain extra elements
* beyond the number that are used. If it is greater than the number used,
* the remaining indices will be 0. Since this vector can resize its
* internal data, if it is modified, this array may no longer represent the
* internal state.
*
* @return The internal array of indices, whose length is greater than or
* equal to the number of used elements. Indices in the array beyond
* the used elements are not valid indices since they are unused.
*/
public int[] getRawIndex() {
return index;
}
/**
* Gets the raw internal data array. This array may contain extra elements
* beyond the number that are used. If it is greater than the number used,
* the remaining indices will be 0. Since this vector can resize its
* internal data, if it is modified, this array may no longer represent the
* internal state.
*
* @return The internal array of values, whose length is greater than or
* equal to the number of used elements. Values in the array beyond
* the used elements are not valid since they are unused.
*/
public double[] getRawData() {
return data;
}
/**
* Number of entries used in the sparse structure
*/
public int getUsed() {
return used;
}
/**
* Compacts the vector
*/
public void compact() {
int nz = Matrices.cardinality(this); // catches zero entries
if (nz < data.length) {
int[] newIndex = new int[nz];
double[] newData = new double[nz];
// Copy only non-zero entries
for (int i = 0, j = 0; i < data.length; ++i)
if (data[i] != 0.) {
newIndex[j] = index[i];
newData[j] = data[i];
j++;
}
data = newData;
index = newIndex;
used = data.length;
}
}
@Override
public Iterator<VectorEntry> iterator() {
return new SparseVectorIterator();
}
@Override
public Vector set(Vector y) {
if (!(y instanceof SparseVector))
return super.set(y);
checkSize(y);
SparseVector yc = (SparseVector) y;
if (yc.index.length != index.length) {
data = new double[yc.data.length];
index = new int[yc.data.length];
}
System.arraycopy(yc.data, 0, data, 0, data.length);
System.arraycopy(yc.index, 0, index, 0, index.length);
used = yc.used;
return this;
}
/**
* Iterator over a sparse vector
*/
private class SparseVectorIterator implements Iterator<VectorEntry> {
private int cursor;
private final SparseVectorEntry entry = new SparseVectorEntry();
public boolean hasNext() {
return cursor < used;
}
public VectorEntry next() {
entry.update(cursor);
cursor++;
return entry;
}
public void remove() {
entry.set(0);
}
}
/**
* Entry of a sparse vector
*/
private class SparseVectorEntry implements VectorEntry {
private int cursor;
public void update(int cursor) {
this.cursor = cursor;
}
public int index() {
return index[cursor];
}
public double get() {
return data[cursor];
}
public void set(double value) {
data[cursor] = value;
}
}
}