Skip to content

Commit

Permalink
Change is_skewsymmetric_matrix to is_alternating (#2566)
Browse files Browse the repository at this point in the history
  • Loading branch information
lgoettgens authored Jul 19, 2023
1 parent d0f7ea7 commit 55d6c89
Show file tree
Hide file tree
Showing 7 changed files with 14 additions and 13 deletions.
2 changes: 1 addition & 1 deletion docs/src/Groups/matgroup.md
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ lower_triangular_matrix(L)
conjugate_transpose(x::MatElem{T}) where T <: FinFieldElem
complement(V::AbstractAlgebra.Generic.FreeModule{T}, W::AbstractAlgebra.Generic.Submodule{T}) where T <: FieldElem
permutation_matrix(F::Ring, Q::AbstractVector{<:IntegerUnion})
is_skewsymmetric_matrix(B::MatElem{T}) where T <: RingElem
is_alternating(B::MatElem)
is_hermitian(B::MatElem{T}) where T <: FinFieldElem
```

Expand Down
2 changes: 1 addition & 1 deletion src/Groups/matrices/forms.jl
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ mutable struct SesquilinearForm{T<:RingElem}
elseif sym==:symmetric
@assert is_symmetric(B) "The matrix is not symmetric"
elseif sym==:alternating
@assert is_skewsymmetric_matrix(B) "The matrix is not skew-symmetric"
@assert is_alternating(B) "The matrix does not correspond to an alternating form"
elseif sym != :quadratic
error("Unsupported description")
end
Expand Down
8 changes: 4 additions & 4 deletions src/Groups/matrices/matrix_manipulation.jl
Original file line number Diff line number Diff line change
Expand Up @@ -160,15 +160,15 @@ permutation_matrix(F::Ring, p::PermGroupElem) = permutation_matrix(F, Vector(p))
#
########################################################################

# TODO: not sure whether this definition of skew-symmetric is standard (for fields of characteristic 2)
# TODO: Move to AbstractAlgebra
"""
is_skewsymmetric_matrix(B::MatElem{T}) where T <: Ring
is_alternating(B::MatElem)
Return whether the matrix `B` is skew-symmetric,
Return whether the form corresponding to the matrix `B` is alternating,
i.e. `B = -transpose(B)` and `B` has zeros on the diagonal.
Return `false` if `B` is not a square matrix.
"""
function is_skewsymmetric_matrix(B::MatElem{T}) where T <: RingElem
function is_alternating(B::MatElem)
n = nrows(B)
n==ncols(B) || return false

Expand Down
1 change: 0 additions & 1 deletion src/aliases.jl
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,6 @@
@alias issemisimple is_semisimple
@alias issimplicial is_simplicial
@alias issingular is_singular
@alias isskewsymmetric_matrix is_skewsymmetric_matrix
@alias issmooth_curve is_smooth_curve
@alias issolvable is_solvable
@alias issupersolvable is_supersolvable
Expand Down
1 change: 0 additions & 1 deletion src/exports.jl
Original file line number Diff line number Diff line change
Expand Up @@ -802,7 +802,6 @@ export is_semisimple
export is_simple, has_is_simple, set_is_simple
export is_simplicial
export is_singular
export is_skewsymmetric_matrix
export is_smooth
export is_solvable, has_is_solvable, set_is_solvable
export is_sporadic_simple, has_is_sporadic_simple, set_is_sporadic_simple
Expand Down
4 changes: 2 additions & 2 deletions test/Groups/forms.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
F,z = FiniteField(t^2+1,"z")

B = matrix(F,4,4,[0 1 0 0; 2 0 0 0; 0 0 0 z+2; 0 0 1-z 0])
@test is_skewsymmetric_matrix(B)
@test is_alternating(B)
f = alternating_form(B)
@test f isa SesquilinearForm
@test gram_matrix(f)==B
Expand Down Expand Up @@ -473,7 +473,7 @@ end
end
B = Oscar.invariant_quadratic_form(G)
@testset for g in gens(G)
@test is_skewsymmetric_matrix(g.elm*B*transpose(g.elm)-B)
@test is_alternating(g.elm*B*transpose(g.elm)-B)
end

G = GU(4,5)
Expand Down
9 changes: 6 additions & 3 deletions test/Groups/operations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -80,16 +80,19 @@ end
@test f(identity_matrix(F,6))==f(1)*identity_matrix(F,6)
@test_throws ArgumentError conjugate_transpose(x)
@test is_symmetric(P+transpose(P))
@test is_skewsymmetric_matrix(P-transpose(P))
@test is_skew_symmetric(P-transpose(P))
@test is_alternating(P-transpose(P))

F,z = FiniteField(2,2)
x=matrix(F,4,4,[1,z,0,0,0,1,z^2,z,z,0,0,1,0,0,z+1,0])
y=x+transpose(x)
@test is_symmetric(y)
@test is_hermitian(x+conjugate_transpose(x))
@test is_skewsymmetric_matrix(y)
@test is_skew_symmetric(y)
@test is_alternating(y)
y[1,1]=1
@test !is_skewsymmetric_matrix(y)
@test is_skew_symmetric(y)
@test !is_alternating(y)
@test conjugate_transpose(x)==transpose(matrix(F,4,4,[1,z+1,0,0,0,1,z,z+1,z+1,0,0,1,0,0,z,0]))

end
Expand Down

0 comments on commit 55d6c89

Please sign in to comment.