Skip to content

Commit

Permalink
more trivial cases
Browse files Browse the repository at this point in the history
  • Loading branch information
lgoettgens committed Sep 27, 2024
1 parent 2edc59a commit 59b30e5
Show file tree
Hide file tree
Showing 13 changed files with 40 additions and 40 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -187,7 +187,7 @@ Returns whether the scheme ``X`` is normal.
# Examples
```jldoctest
julia> R, (x, y, z) = rational_field()["x", "y", "z"];
julia> R, (x, y, z) = QQ[:x, :y, :z];
julia> X = spec(R);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ X_i \to X``, where ``X`` is the disjoint union of the covered schemes
# Examples
```jldoctest
julia> R_1, (x, y, z) = grade(rational_field()["x", "y", "z"][1]);
julia> R_1, (x, y, z) = graded_polynomial_ring(QQ, [:x, :y, :z]);
julia> I_1 = ideal(R_1, z*x^2 + y^3);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -168,7 +168,7 @@ Returns whether the scheme ``X`` is normal.
# Examples
```jldoctest
julia> R, (x, y, z) = rational_field()["x", "y", "z"];
julia> R, (x, y, z) = QQ[:x, :y, :z];
julia> X = covered_scheme(spec(R));
Expand Down Expand Up @@ -204,7 +204,7 @@ of non-integral schemes.
# Examples
```jldoctest
julia> R, (x, y, z) = grade(rational_field()["x", "y", "z"][1]);
julia> R, (x, y, z) = graded_polynomial_ring(QQ, [:x, :y, :z]);
julia> I = ideal(R, z*x^2 + y^3);
Expand Down
4 changes: 2 additions & 2 deletions src/Rings/FreeAssociativeAlgebraIdeal.jl
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,7 @@ Otherwise, returning `false` indicates an inconclusive answer, but larger `deg_b
If `deg_bound` is not specified, the default value is `-1`, which means that no degree bound is imposed,
resulting in a calculation using a much slower algorithm that may not terminate, but will return a full Groebner basis if it does.
```jldoctest
julia> free, (x,y,z) = free_associative_algebra(QQ, ["x", "y", "z"]);
julia> free, (x,y,z) = free_associative_algebra(QQ, [:x, :y, :z]);
julia> f1 = x*y + y*z;
Expand Down Expand Up @@ -163,7 +163,7 @@ The default value of `deg_bound` is `-1`, which means that no degree bound is
imposed, resulting in a computation that is usually slower, but will return a
full Groebner basis if there exists a finite one.
```jldoctest
julia> free, (x,y,z) = free_associative_algebra(QQ, ["x", "y", "z"]);
julia> free, (x,y,z) = free_associative_algebra(QQ, [:x, :y, :z]);
julia> f1 = x*y + y*z;
Expand Down
24 changes: 12 additions & 12 deletions src/Rings/PBWAlgebra.jl
Original file line number Diff line number Diff line change
Expand Up @@ -499,7 +499,7 @@ The generators of the returned algebra print according to the entries of `xs`. S
# Examples
```jldoctest
julia> D, (x, y, dx, dy) = weyl_algebra(QQ, ["x", "y"])
julia> D, (x, y, dx, dy) = weyl_algebra(QQ, [:x, :y])
(Weyl-algebra over Rational field in variables (x, y), PBWAlgElem{QQFieldElem, Singular.n_Q}[x, y, dx, dy])
julia> dx*x
Expand Down Expand Up @@ -548,7 +548,7 @@ Return the opposite algebra of `A`.
# Examples
```jldoctest
julia> D, (x, y, dx, dy) = weyl_algebra(QQ, ["x", "y"])
julia> D, (x, y, dx, dy) = weyl_algebra(QQ, [:x, :y])
(Weyl-algebra over Rational field in variables (x, y), PBWAlgElem{QQFieldElem, Singular.n_Q}[x, y, dx, dy])
julia> Dop, opp = opposite_algebra(D);
Expand Down Expand Up @@ -743,7 +743,7 @@ Return `true` if `I` is the zero ideal, `false` otherwise.
# Examples
```jldoctest
julia> D, (x, y, dx, dy) = weyl_algebra(QQ, ["x", "y"])
julia> D, (x, y, dx, dy) = weyl_algebra(QQ, [:x, :y])
(Weyl-algebra over Rational field in variables (x, y), PBWAlgElem{QQFieldElem, Singular.n_Q}[x, y, dx, dy])
julia> I = left_ideal(D, [x, dx])
Expand Down Expand Up @@ -773,7 +773,7 @@ Return `true` if `I` is generated by `1`, `false` otherwise.
# Examples
```jldoctest
julia> D, (x, y, dx, dy) = weyl_algebra(QQ, ["x", "y"])
julia> D, (x, y, dx, dy) = weyl_algebra(QQ, [:x, :y])
(Weyl-algebra over Rational field in variables (x, y), PBWAlgElem{QQFieldElem, Singular.n_Q}[x, y, dx, dy])
julia> I = left_ideal(D, [x, dx])
Expand All @@ -796,7 +796,7 @@ true
```
```jldoctest
julia> D, (x, y, dx, dy) = weyl_algebra(GF(3), ["x", "y"]);
julia> D, (x, y, dx, dy) = weyl_algebra(GF(3), [:x, :y]);
julia> I = two_sided_ideal(D, [x^3])
two_sided_ideal(x^3)
Expand Down Expand Up @@ -860,7 +860,7 @@ or `I` and `J` are a left and a right ideal, respectively, return the product of
# Examples
```jldoctest
julia> D, (x, y, dx, dy) = weyl_algebra(GF(3), ["x", "y"]);
julia> D, (x, y, dx, dy) = weyl_algebra(GF(3), [:x, :y]);
julia> I = left_ideal(D, [x^3+y^3, x*y^2])
left_ideal(x^3 + y^3, x*y^2)
Expand All @@ -886,7 +886,7 @@ Given a two_sided ideal `I`, return the `k`-th power of `I`.
# Examples
```jldoctest
julia> D, (x, dx) = weyl_algebra(GF(3), ["x"]);
julia> D, (x, dx) = weyl_algebra(GF(3), [:x]);
julia> I = two_sided_ideal(D, [x^3])
two_sided_ideal(x^3)
Expand Down Expand Up @@ -925,7 +925,7 @@ Return the intersection of two or more ideals.
# Examples
```jldoctest
julia> D, (x, y, dx, dy) = weyl_algebra(QQ, ["x", "y"]);
julia> D, (x, y, dx, dy) = weyl_algebra(QQ, [:x, :y]);
julia> I = intersect(left_ideal(D, [x^2, x*dy, dy^2])+left_ideal(D, [dx]), left_ideal(D, [dy^2-x^3+x]))
left_ideal(-x^3 + dy^2 + x)
Expand Down Expand Up @@ -972,7 +972,7 @@ Return `true` if `f` is contained in `I`, `false` otherwise. Alternatively, use
# Examples
```jldoctest
julia> D, (x, dx) = weyl_algebra(QQ, ["x"]);
julia> D, (x, dx) = weyl_algebra(QQ, [:x]);
julia> I = left_ideal(D, [x*dx^4, x^3*dx^2])
left_ideal(x*dx^4, x^3*dx^2)
Expand All @@ -982,7 +982,7 @@ true
```
```jldoctest
julia> D, (x, y, dx, dy) = weyl_algebra(QQ, ["x", "y"]);
julia> D, (x, y, dx, dy) = weyl_algebra(QQ, [:x, :y]);
julia> I = two_sided_ideal(D, [x, dx])
two_sided_ideal(x, dx)
Expand Down Expand Up @@ -1017,7 +1017,7 @@ end
Return `true` if `I` is contained in `J`, `false` otherwise.
# Examples
```jldoctest
julia> D, (x, dx) = weyl_algebra(QQ, ["x"]);
julia> D, (x, dx) = weyl_algebra(QQ, [:x]);
julia> I = left_ideal(D, [dx^2])
left_ideal(dx^2)
Expand Down Expand Up @@ -1052,7 +1052,7 @@ Return `true` if `I` is equal to `J`, `false` otherwise.
# Examples
```jldoctest
julia> D, (x, dx) = weyl_algebra(QQ, ["x"]);
julia> D, (x, dx) = weyl_algebra(QQ, [:x]);
julia> I = left_ideal(D, [dx^2])
left_ideal(dx^2)
Expand Down
4 changes: 2 additions & 2 deletions test/AlgebraicGeometry/Schemes/BlowupMorphism.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
end

@testset "strict transforms of cartier divisors" begin
IP2 = projective_space(QQ, ["x", "y", "z"])
IP2 = projective_space(QQ, [:x, :y, :z])
S = ambient_coordinate_ring(IP2)
(x,y,z) = gens(S)
I = ideal(S, [x, y])
Expand All @@ -37,7 +37,7 @@ end
end

@testset "isomorphism on complement of center" begin
P = projective_space(QQ, ["x", "y", "z"])
P = projective_space(QQ, [:x, :y, :z])
S = homogeneous_coordinate_ring(P)
(x, y, z) = gens(S)
II = IdealSheaf(P, [x, y])
Expand Down
2 changes: 1 addition & 1 deletion test/AlgebraicGeometry/Schemes/CartierDivisor.jl
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ end
end

@testset "conversion of Cartier to Weil divisors" begin
IP2 = projective_space(QQ, ["x", "y", "z"])
IP2 = projective_space(QQ, [:x, :y, :z])
S = homogeneous_coordinate_ring(IP2)
(x,y,z) = gens(S)
I = ideal(S, x^2*y^3*(x+y+z))
Expand Down
6 changes: 3 additions & 3 deletions test/AlgebraicGeometry/Schemes/CoherentSheaves.jl
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@
end

@testset "Pushforward of modules" begin
IP = projective_space(QQ, ["x", "y", "z"])
IP = projective_space(QQ, [:x, :y, :z])
S = homogeneous_coordinate_ring(IP)
(x,y,z) = gens(S)
f = z^2 - x*y
Expand Down Expand Up @@ -119,7 +119,7 @@ end
end

@testset "projectivization of vector bundles" begin
IP = projective_space(QQ, ["x", "y", "z", "w"])
IP = projective_space(QQ, [:x, :y, :z, :w])
S = homogeneous_coordinate_ring(IP)
(x,y,z,w) = gens(S)
f = x^4 + y^4 + z^4 + w^4
Expand Down Expand Up @@ -155,7 +155,7 @@ end
end

@testset "direct sums of sheaves" begin
IP = projective_space(QQ, ["x", "y", "z", "w"])
IP = projective_space(QQ, [:x, :y, :z, :w])
S = homogeneous_coordinate_ring(IP)
(x, y, z, w) = gens(S)
f = x^4 + y^4 + z^4 + w^4
Expand Down
2 changes: 1 addition & 1 deletion test/AlgebraicGeometry/Schemes/CoveredScheme.jl
Original file line number Diff line number Diff line change
Expand Up @@ -118,7 +118,7 @@
end

@testset "closed embeddings and singular loci" begin
IP2 = projective_space(QQ, ["x", "y", "z"])
IP2 = projective_space(QQ, [:x, :y, :z])
S = homogeneous_coordinate_ring(IP2)
(x, y, z) = gens(S)
f = x^2*z + y^3 - y^2*z
Expand Down
4 changes: 2 additions & 2 deletions test/AlgebraicGeometry/Schemes/FunctionFields.jl
Original file line number Diff line number Diff line change
Expand Up @@ -119,7 +119,7 @@ end
end

@testset "pullbacks for function fields" begin
P = projective_space(QQ, ["x", "y", "z"])
P = projective_space(QQ, [:x, :y, :z])
(x, y, z) = gens(homogeneous_coordinate_ring(P))
Y = covered_scheme(P)
II = ideal_sheaf(P, [x,y])
Expand All @@ -143,7 +143,7 @@ end
end

@testset "refinements" begin
P = projective_space(QQ, ["x", "y", "z"])
P = projective_space(QQ, [:x, :y, :z])
S = homogeneous_coordinate_ring(P)
(x, y, z) = gens(S)
Y = covered_scheme(P)
Expand Down
4 changes: 2 additions & 2 deletions test/AlgebraicGeometry/ToricVarieties/toric_schemes.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
end

IP1 = projective_space(NormalToricVariety, 1)
set_coordinate_names(IP1, ["x", "y"])
set_coordinate_names(IP1, [:x, :y])
Y = IP1*IP1

@testset "Product of projective spaces" begin
Expand All @@ -27,7 +27,7 @@
end

IP2 = projective_space(NormalToricVariety, 2)
set_coordinate_names(IP2, ["x", "y", "z"])
set_coordinate_names(IP2, [:x, :y, :z])
X, iso = Oscar.forget_toric_structure(IP2)

@testset "Forget toric structure" begin
Expand Down
12 changes: 6 additions & 6 deletions test/Rings/FreeAssociativeAlgebraIdeal.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
@testset "FreeAssociativeAlgebraIdeal.basic" begin
Zt = polynomial_ring(ZZ, :t)[1]
R, (x, y, z) = free_associative_algebra(Zt, ["x", "y", "z", "w"])
R, (x, y, z) = free_associative_algebra(Zt, [:x, :y, :z, :w])
I = ideal(R, [x*y*x, y*z^2])
@test base_ring(I) == R
for p in gens(R)
Expand All @@ -9,13 +9,13 @@
end

@testset "FreeAssociativeAlgebraIdeal.printing" begin
R, (x, y, z) = free_associative_algebra(GF(5), ["x", "y", "z", "w"])
R, (x, y, z) = free_associative_algebra(GF(5), [:x, :y, :z, :w])
I = ideal(R, [x*y*x, y*z^2])
@test length(string(I)) > 3
end

@testset "FreeAssociativeAlgebraIdeal.membership" begin
R, (x, y, z) = free_associative_algebra(QQ, ["x", "y", "z"])
R, (x, y, z) = free_associative_algebra(QQ, [:x, :y, :z])
I = ideal(R, [x*y - y*x, x*z - z*x])
@test !ideal_membership(x, I, 5)
@test !ideal_membership(x, I, 10)
Expand All @@ -34,7 +34,7 @@ end
end

@testset "FreeAssociativeAlgebraIdeal.utils" begin
R, (x, y, z) = free_associative_algebra(QQ, ["x", "y", "z"])
R, (x, y, z) = free_associative_algebra(QQ, [:x, :y, :z])
I = ideal(R, [x*y - y*x, x*z - z*x])
@test base_ring(I) == R
@test isa(ngens(I),Int)
Expand All @@ -46,15 +46,15 @@ end
@test isa(lpring,NCRing)

_, (x, y, z) = Singular.FreeAlgebra(QQ, ["x", "y","z"],6)
free, _ = free_associative_algebra(QQ, ["x", "y", "z"])
free, _ = free_associative_algebra(QQ, [:x, :y, :z])
f1 = x*y + y*z

F1 = free(f1)
@test isa(F1,FreeAssociativeAlgebraElem)
end

@testset "FreeAssociativeAlgebraIdeal.groebner_basis" begin
free, (x,y,z) = free_associative_algebra(QQ, ["x", "y", "z"])
free, (x,y,z) = free_associative_algebra(QQ, [:x, :y, :z])
f1 = x*y + y*z
f2 = x^2 + y^2
I = ideal([f1, f2])
Expand Down
10 changes: 5 additions & 5 deletions test/Rings/PBWAlgebra.jl
Original file line number Diff line number Diff line change
Expand Up @@ -65,10 +65,10 @@ end
end

@testset "PBWAlgebra.weyl_algebra" begin
R, (x, dx) = weyl_algebra(QQ, ["x"])
R, (x, dx) = weyl_algebra(QQ, [:x])
@test dx*x == 1 + x*dx

R, (x, y, dx, dy) = weyl_algebra(QQ, ["x", "y"])
R, (x, y, dx, dy) = weyl_algebra(QQ, [:x, :y])
@test dx*x == 1 + x*dx
@test dy*y == 1 + y*dy
@test dx*y == y*dx
Expand All @@ -77,7 +77,7 @@ end
end

@testset "PBWAlgebra.opposite_algebra" begin
R, (x, y, dx, dy) = weyl_algebra(QQ, ["x", "y"])
R, (x, y, dx, dy) = weyl_algebra(QQ, [:x, :y])
opR, M = opposite_algebra(R)
@test M(dy*dx*x*y) == M(y)*M(x)*M(dx)*M(dy)
@test inv(M)(M(x)) == x
Expand All @@ -91,7 +91,7 @@ end
end

@testset "PBWAlgebra.ideals" begin
R, (x, y, dx, dy) = weyl_algebra(QQ, ["x", "y"])
R, (x, y, dx, dy) = weyl_algebra(QQ, [:x, :y])

I = left_ideal([x^2, y^2])
@test length(string(I)) > 2
Expand Down Expand Up @@ -206,7 +206,7 @@ end
@test eliminate(M.(I), M.([x, d])) == M.(left_ideal([a]))
end

R, (x, dx) = weyl_algebra(QQ, ["x"])
R, (x, dx) = weyl_algebra(QQ, [:x])
@test is_zero(eliminate(left_ideal([x*dx]), [x, dx]))
@test is_one(eliminate(left_ideal([x, 1-x]), [x, dx]))

Expand Down

0 comments on commit 59b30e5

Please sign in to comment.