Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Prefer symbols over strings in polynomial_ring #4133

Merged
merged 2 commits into from
Sep 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions docs/src/CommutativeAlgebra/GroebnerBases/groebner_bases.md
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ Here are some illustrating OSCAR examples:
##### Examples

```jldoctest
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
julia> R, (x, y, z) = polynomial_ring(QQ, [:x, :y, :z])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])

julia> default_ordering(R)
Expand Down Expand Up @@ -90,7 +90,7 @@ Here are examples which indicate how to recover monomials, terms, and
more from a given polynomial.

```jldoctest
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
julia> R, (x, y, z) = polynomial_ring(QQ, [:x, :y, :z])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])

julia> f = 3*z^3+2*x*y+1
Expand Down Expand Up @@ -143,7 +143,7 @@ julia> tail(f)
```

```jldoctest
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
julia> R, (x, y) = polynomial_ring(QQ, [:x, :y])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])

julia> F = free_module(R, 3)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ $f \in \mathbb Z[x]_>$, the notions *leading term*, *leading monomial*, *leading
##### Examples

```jldoctest
julia> R, (x, y) = polynomial_ring(ZZ, ["x", "y"]);
julia> R, (x, y) = polynomial_ring(ZZ, [:x, :y]);

julia> reduce(3*x, [2*x])
x
Expand Down Expand Up @@ -50,7 +50,7 @@ We refer to the textbook [AL94](@cite) for more on this.
##### Examples

```jldoctest
julia> R, (x,y) = polynomial_ring(ZZ, ["x","y"])
julia> R, (x,y) = polynomial_ring(ZZ, [:x,:y])
(Multivariate polynomial ring in 2 variables over ZZ, ZZMPolyRingElem[x, y])

julia> I = ideal(R, [3*x^2*y+7*y, 4*x*y^2-5*x])
Expand Down
8 changes: 4 additions & 4 deletions docs/src/CommutativeAlgebra/GroebnerBases/orderings.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ Here are some illustrating examples:
##### Examples

```jldoctest
julia> S, (w, x) = polynomial_ring(QQ, ["w", "x"])
julia> S, (w, x) = polynomial_ring(QQ, [:w, :x])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[w, x])

julia> o = lex([w, x])
Expand All @@ -58,7 +58,7 @@ julia> canonical_matrix(o)
[1 0]
[0 1]

julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"])
julia> R, (w, x, y, z) = polynomial_ring(QQ, [:w, :x, :y, :z])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[w, x, y, z])

julia> o1 = degrevlex([w, x])
Expand Down Expand Up @@ -314,7 +314,7 @@ In OSCAR, block orderings are obtained by the concatenation of individual order
##### Examples

```jldoctest
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"])
julia> R, (w, x, y, z) = polynomial_ring(QQ, [:w, :x, :y, :z])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[w, x, y, z])

julia> o = degrevlex([w, x])*degrevlex([y, z])
Expand Down Expand Up @@ -405,7 +405,7 @@ basis vectors as *lex*, and to the $i > j$ ordering as *invlex*. And, we use the
##### Examples

```jldoctest
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"]);
julia> R, (w, x, y, z) = polynomial_ring(QQ, [:w, :x, :y, :z]);

julia> F = free_module(R, 3)
Free module of rank 3 over R
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ is_binomial(f::MPolyRingElem)
is_binomial(I::MPolyIdeal)
```
```jldoctest
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
julia> R, (x, y, z) = polynomial_ring(QQ, [:x, :y, :z])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])

julia> f = 2*x+y
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ Given a complex `C`,
##### Examples

```jldoctest
julia> R, (x,) = polynomial_ring(QQ, ["x"]);
julia> R, (x,) = polynomial_ring(QQ, [:x]);

julia> F = free_module(R, 1);

Expand Down Expand Up @@ -86,7 +86,7 @@ with maps multiplied by $(-1)^d$.
##### Examples

```jldoctest
julia> R, (x,) = polynomial_ring(QQ, ["x"]);
julia> R, (x,) = polynomial_ring(QQ, [:x]);

julia> F = free_module(R, 1);

Expand Down Expand Up @@ -150,7 +150,7 @@ is_exact(C::ComplexOfMorphisms{ModuleFP})
##### Examples

```jldoctest
julia> R, (x,) = polynomial_ring(QQ, ["x"]);
julia> R, (x,) = polynomial_ring(QQ, [:x]);

julia> F = free_module(R, 1);

Expand All @@ -162,7 +162,7 @@ julia> a = hom(A, B, [x^2*B[1]]);

julia> b = hom(B, B, [x^2*B[1]]);

julia> R, (x,) = polynomial_ring(QQ, ["x"]);
julia> R, (x,) = polynomial_ring(QQ, [:x]);

julia> C = chain_complex([a, b]);

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ If `F` is a free `R`-module, then
###### Examples

```jldoctest
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"]);
julia> R, (x, y) = polynomial_ring(QQ, [:x, :y]);

julia> F = free_module(R, 3);

Expand Down Expand Up @@ -114,7 +114,7 @@ Alternatively, directly write the element as a linear combination of basis vecto
##### Examples

```jldoctest
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"]);
julia> R, (x, y) = polynomial_ring(QQ, [:x, :y]);

julia> F = free_module(R, 3);

Expand All @@ -138,7 +138,7 @@ Given an element `f` of a free module `F` over a multivariate polynomial ring w
##### Examples

```jldoctest
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"]);
julia> R, (x, y) = polynomial_ring(QQ, [:x, :y]);

julia> F = free_module(R, 3);

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ If `M` is a subquotient with ambient free `R`-module `F`, then
##### Examples

```jldoctest
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
julia> R, (x, y, z) = polynomial_ring(QQ, [:x, :y, :z])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])

julia> F = free_module(R, 1)
Expand Down Expand Up @@ -175,7 +175,7 @@ Alternatively, directly write the element as an $R$-linear combination of genera
##### Examples

```jldoctest
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
julia> R, (x, y, z) = polynomial_ring(QQ, [:x, :y, :z])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])

julia> F = free_module(R, 1)
Expand Down Expand Up @@ -231,7 +231,7 @@ If this is already clear, it may be convenient to omit the test (`check = false`
##### Examples

```jldoctest
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
julia> R, (x, y, z) = polynomial_ring(QQ, [:x, :y, :z])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])

julia> F = free_module(R, 1)
Expand Down
26 changes: 13 additions & 13 deletions docs/src/CommutativeAlgebra/affine_algebras.md
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ If `A=R/I` is the quotient of a multivariate polynomial ring `R` modulo an ideal
###### Examples

```jldoctest
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> R, (x, y, z) = polynomial_ring(QQ, [:x, :y, :z]);

julia> A, _ = quo(R, ideal(R, [y-x^2, z-x^3]));

Expand Down Expand Up @@ -141,7 +141,7 @@ or by directly coercing elements of `R` into `A`.
###### Examples

```jldoctest
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"]);
julia> R, (x, y) = polynomial_ring(QQ, [:x, :y]);

julia> A, p = quo(R, ideal(R, [x^3*y^2-y^3*x^2, x*y^4-x*y^2]));

Expand Down Expand Up @@ -225,7 +225,7 @@ If `a` is an ideal of the affine algebra `A`, then
###### Examples

```jldoctest
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> R, (x, y, z) = polynomial_ring(QQ, [:x, :y, :z]);

julia> A, _ = quo(R, ideal(R, [y-x^2, z-x^3]));

Expand Down Expand Up @@ -359,9 +359,9 @@ kernel(F::AffAlgHom)
###### Examples

```jldoctest
julia> D1, (w, x, y, z) = graded_polynomial_ring(QQ, ["w", "x", "y", "z"]);
julia> D1, (w, x, y, z) = graded_polynomial_ring(QQ, [:w, :x, :y, :z]);

julia> C1, (s,t) = graded_polynomial_ring(QQ, ["s", "t"]);
julia> C1, (s,t) = graded_polynomial_ring(QQ, [:s, :t]);

julia> V1 = [s^3, s^2*t, s*t^2, t^3];

Expand All @@ -383,7 +383,7 @@ Ideal generated by

julia> C2, p2 = quo(D1, twistedCubic);

julia> D2, (a, b, c) = graded_polynomial_ring(QQ, ["a", "b", "c"]);
julia> D2, (a, b, c) = graded_polynomial_ring(QQ, [:a, :b, :c]);

julia> V2 = [p2(w-y), p2(x), p2(z)];

Expand All @@ -403,9 +403,9 @@ Ideal generated by
```

```jldoctest
julia> D3,y = polynomial_ring(QQ, "y" => 1:3);
julia> D3,y = polynomial_ring(QQ, :y => 1:3);

julia> C3, x = polynomial_ring(QQ, "x" => 1:3);
julia> C3, x = polynomial_ring(QQ, :x => 1:3);

julia> V3 = [x[1]*x[2], x[1]*x[3], x[2]*x[3]];

Expand Down Expand Up @@ -441,9 +441,9 @@ is_finite(F::AffAlgHom)
###### Examples

```jldoctest
julia> D, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> D, (x, y, z) = polynomial_ring(QQ, [:x, :y, :z]);

julia> S, (a, b, c) = polynomial_ring(QQ, ["a", "b", "c"]);
julia> S, (a, b, c) = polynomial_ring(QQ, [:a, :b, :c]);

julia> C, p = quo(S, ideal(S, [c-b^3]));

Expand Down Expand Up @@ -471,9 +471,9 @@ true
```

```jldoctest
julia> R, (x, y, z) = polynomial_ring(QQ, [ "x", "y", "z"]);
julia> R, (x, y, z) = polynomial_ring(QQ, [ :x, :y, :z]);

julia> C, (s, t) = polynomial_ring(QQ, ["s", "t"]);
julia> C, (s, t) = polynomial_ring(QQ, [:s, :t]);

julia> V = [s*t, t, s^2];

Expand Down Expand Up @@ -528,7 +528,7 @@ noether_normalization(A::MPolyQuoRing)
###### Examples

```jldoctest; setup = :(Singular.call_interpreter("""system("random", 47);"""))
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> R, (x, y, z) = polynomial_ring(QQ, [:x, :y, :z]);

julia> A, _ = quo(R, ideal(R, [x*y, x*z]));

Expand Down
4 changes: 2 additions & 2 deletions docs/src/CommutativeAlgebra/ideals.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ If `I` is an ideal of a multivariate polynomial ring `R`, then
###### Examples

```jldoctest
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
julia> R, (x, y) = polynomial_ring(QQ, [:x, :y])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])

julia> I = ideal(R, [x, y])^2
Expand Down Expand Up @@ -267,7 +267,7 @@ dehomogenizer(H::Homogenizer)
```

```jldoctest
julia> P, (x, y) = polynomial_ring(QQ, ["x", "y"]);
julia> P, (x, y) = polynomial_ring(QQ, [:x, :y]);

julia> I = ideal([x^2+y, x*y+y^2]);

Expand Down
20 changes: 10 additions & 10 deletions docs/src/CommutativeAlgebra/localizations.md
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,7 @@ This reflects the way of creating localizations of quotients of multivariate pol
##### Examples

```jldoctest
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> R, (x, y, z) = polynomial_ring(QQ, [:x, :y, :z]);

julia> P = ideal(R, [x])
Ideal generated by
Expand All @@ -127,11 +127,11 @@ true
```

```jldoctest
julia> T, t = polynomial_ring(QQ, "t");
julia> T, t = polynomial_ring(QQ, :t);

julia> K, a = number_field(2*t^2-1, "a");

julia> R, (x, y) = polynomial_ring(K, ["x", "y"]);
julia> R, (x, y) = polynomial_ring(K, [:x, :y]);

julia> I = ideal(R, [2*x^2-y^3, 2*x^2-y^5])
Ideal generated by
Expand Down Expand Up @@ -180,7 +180,7 @@ multiplicatively closed subset of `R`, and `RQL` is the localization of `RQ` at
##### Examples

```jldoctest
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
julia> R, (x, y, z) = polynomial_ring(QQ, [:x, :y, :z])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])

julia> P = ideal(R, [x])
Expand Down Expand Up @@ -222,11 +222,11 @@ y^2/z^2
```

```jldoctest
julia> T, t = polynomial_ring(QQ, "t");
julia> T, t = polynomial_ring(QQ, :t);

julia> K, a = number_field(2*t^2-1, "a");

julia> R, (x, y) = polynomial_ring(K, ["x", "y"]);
julia> R, (x, y) = polynomial_ring(K, [:x, :y]);

julia> I = ideal(R, [2*x^2-y^3, 2*x^2-y^5])
Ideal generated by
Expand Down Expand Up @@ -294,7 +294,7 @@ of representing `f` by pairs of elements of `RQ` and not the internal representa
##### Examples

```jldoctest
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> R, (x, y, z) = polynomial_ring(QQ, [:x, :y, :z]);

julia> P = ideal(R, [x])
Ideal generated by
Expand Down Expand Up @@ -330,11 +330,11 @@ true
```

```jldoctest
julia> T, t = polynomial_ring(QQ, "t");
julia> T, t = polynomial_ring(QQ, :t);

julia> K, a = number_field(2*t^2-1, "a");

julia> R, (x, y) = polynomial_ring(K, ["x", "y"]);
julia> R, (x, y) = polynomial_ring(K, [:x, :y]);

julia> I = ideal(R, [2*x^2-y^3, 2*x^2-y^5])
Ideal generated by
Expand Down Expand Up @@ -439,7 +439,7 @@ multivariate polynomial rings is similar..
##### Examples

```jldoctest
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"]);
julia> R, (x, y) = polynomial_ring(QQ, [:x, :y]);

julia> f = x^3+y^4
x^3 + y^4
Expand Down
Loading
Loading