Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adds free resolutions over quotient rings by using Singular.sres #4134

Merged
merged 17 commits into from
Sep 30, 2024
Merged
Show file tree
Hide file tree
Changes from 10 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 20 additions & 9 deletions src/Modules/UngradedModules/FreeResolutions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -230,15 +230,15 @@ function _extend_free_resolution(cc::Hecke.ComplexOfMorphisms, idx::Int)
end

@doc raw"""
free_resolution(M::SubquoModule{<:MPolyRingElem};
ordering::ModuleOrdering = default_ordering(M),
length::Int = 0, algorithm::Symbol = :fres
)
free_resolution(M::SubquoModule{T};
length::Int=0,
algorithm::Symbol = T <:MPolyRingElem ? :fres : :sres) where {T <: Union{MPolyRingElem, MPolyQuoRingElem}}

Return a free resolution of `M`.

If `length != 0`, the free resolution is only computed up to the `length`-th free module.
Current options for `algorithm` are `:fres`, `:nres`, and `:mres`.
Current options for `algorithm` are `:fres`, `:nres`, and `:mres` for modules over
polynomial rings and `:sres` for modules over quotients of polynomial rings.

!!! note
The function first computes a presentation of `M`. It then successively computes
Expand All @@ -255,6 +255,10 @@ Current options for `algorithm` are `:fres`, `:nres`, and `:mres`.
[EMSS16](@cite). Typically, this is more efficient than the approaches above, but the
resulting resolution is far from being minimal.

!!! note
If `M` is a module over a quotient of a polynomial ring then the `length` keyword must
be set to a nonzero value.

# Examples
```jldoctest
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
Expand Down Expand Up @@ -392,16 +396,20 @@ julia> matrix(map(FM3, 1))

```

**Note:** Over rings other than polynomial rings, the method will default to a lazy,
**Note:** Over rings other than polynomial rings or quotients of polynomial rings, the method will default to a lazy,
iterative kernel computation.
"""
function free_resolution(M::SubquoModule{<:MPolyRingElem};
ordering::ModuleOrdering = default_ordering(M),
length::Int=0, algorithm::Symbol=:fres)
function free_resolution(M::SubquoModule{T};
length::Int=0,
algorithm::Symbol = T <:MPolyRingElem ? :fres : :sres) where {T <: Union{MPolyRingElem, MPolyQuoRingElem}}

coefficient_ring(base_ring(M)) isa AbstractAlgebra.Field ||
error("Must be defined over a field.")

if T <: MPolyQuoRingElem
!iszero(length) || error("Specify a length up to which a free resolution should be computed")
end

Comment on lines +409 to +412
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Singular's sres sets a default of nvars(basering) modules to be computed, if no length is specified. It might be better for compatibility to document this fallback instead of throwing an error.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you for taking a look. Having this default nvars(basering) length is the same they had in Macaulay2, they told me that they removed this at some point for clarity for the users.

But if you prefer to have this default, I will of course make the appropriate changes.

cc_complete = false

#= Start with presentation =#
Expand Down Expand Up @@ -435,6 +443,9 @@ function free_resolution(M::SubquoModule{<:MPolyRingElem};
elseif algorithm == :nres
gbpres = singular_kernel_entry
res = Singular.nres(gbpres, length)
elseif algorithm == :sres && T <: MPolyQuoRingElem
gbpres = Singular.std(singular_kernel_entry)
res = Singular.sres(gbpres, length)
else
error("Unsupported algorithm $algorithm")
end
Expand Down
56 changes: 43 additions & 13 deletions src/Modules/UngradedModules/ModuleGens.jl
Original file line number Diff line number Diff line change
Expand Up @@ -261,22 +261,52 @@ end

Convert a Singular vector to a free module element.
"""
function (F::FreeMod)(s::Singular.svector)
pos = Int[]
values = []
function (F::FreeMod{<:MPolyRingElem})(s::Singular.svector)
Rx = base_ring(F)
R = base_ring(Rx)
for (i, e, c) = s
f = Base.findfirst(==(i), pos)
if f === nothing
push!(values, MPolyBuildCtx(base_ring(F)))
f = length(values)
push!(pos, i)
R = coefficient_ring(Rx)
ctx = MPolyBuildCtx(Rx)

# shortcut in order not to allocate the dictionary
if isone(length(s))
(i, e, c) = first(s)
push_term!(ctx, R(c), e)
return FreeModElem(sparse_row(Qx, [(i, finish(ctx))]))
HechtiDerLachs marked this conversation as resolved.
Show resolved Hide resolved
end

cache = IdDict{Int, typeof(ctx)}()
for (i, e, c) in s
ctx = get!(cache, i) do
MPolyBuildCtx(Rx)
end
push_term!(ctx, R(c), e)
end
return FreeModElem(sparse_row(Rx, [(i, finish(ctx)) for (i, ctx) in cache]), F)
end

# TODO: move this eventually
length(s::Singular.svector) = Int(Singular.libSingular.pLength(s.ptr))
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please move this to Singular.jl before merging this PR. Sorting this out afterwards is more of a hassle than doing it right the first time

lgoettgens marked this conversation as resolved.
Show resolved Hide resolved

function (F::FreeMod{<:MPolyQuoRingElem})(s::Singular.svector)
Qx = base_ring(F)::MPolyQuoRing
Rx = base_ring(Qx)::MPolyRing
R = coefficient_ring(Rx)
ctx = MPolyBuildCtx(Rx)

# shortcut in order not to allocate the dictionary
if isone(length(s))
(i, e, c) = first(s)
push_term!(ctx, R(c), e)
return FreeModElem(sparse_row(Qx, [(i, Qx(finish(ctx)))]))
end

cache = IdDict{Int, typeof(ctx)}()
for (i, e, c) in s
ctx = get!(cache, i) do
MPolyBuildCtx(Rx)
end
push_term!(values[f], R(c), e)
push_term!(ctx, R(c), e)
end
pv = Tuple{Int, elem_type(Rx)}[(pos[i], base_ring(F)(finish(values[i]))) for i=1:length(pos)]
return FreeModElem(sparse_row(base_ring(F), pv), F)
return FreeModElem(sparse_row(Qx, [(i, Qx(finish(ctx))) for (i, ctx) in cache]), F)
end

# After creating the required infrastruture in Singular,
Expand Down
5 changes: 3 additions & 2 deletions src/Modules/UngradedModules/Presentation.jl
Original file line number Diff line number Diff line change
Expand Up @@ -532,7 +532,7 @@ function prune_with_map(M::ModuleFP)
return N, b
end

function prune_with_map(M::ModuleFP{T}) where {T<:MPolyRingElem{<:FieldElem}} # The case that can be handled by Singular
function prune_with_map(M::ModuleFP{T}) where {T<:Union{MPolyRingElem, MPolyQuoRingElem}} # The case that can be handled by Singular

# Singular presentation
pm = presentation(M)
Expand Down Expand Up @@ -577,7 +577,8 @@ function prune_with_map(M::ModuleFP{T}) where {T<:MPolyRingElem{<:FieldElem}} #
end

function _presentation_minimal(SQ::ModuleFP{T};
minimal_kernel::Bool=true) where {T<:MPolyRingElem{<:FieldElem}}
minimal_kernel::Bool=true) where {T <: Union{MPolyRingElem, MPolyQuoRingElem}}
R = base_ring(SQ)

R = base_ring(SQ)

Expand Down
2 changes: 1 addition & 1 deletion test/Modules/MPolyQuo.jl
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,7 @@ end
A2 = FreeMod(A, 2)
v = [x*A2[1] + y*A2[2], z*A2[1] + (x-1)*A2[2]]
M, _ = quo(A2, v)
p = free_resolution(M)
p = free_resolution(M, length = 11)
@test !iszero(p[10])
RafaelDavidMohr marked this conversation as resolved.
Show resolved Hide resolved
end

Expand Down
8 changes: 8 additions & 0 deletions test/Modules/UngradedModules.jl
Original file line number Diff line number Diff line change
Expand Up @@ -275,6 +275,14 @@ end
@test relations(C) == [zero(F)]
@test domain(isom) == F
@test codomain(isom) == C

R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
A, p = quo(R, ideal(R, x^5))
M1 = identity_matrix(A, 2)
M2 = A[-x-y 2*x^2+x; z^4 0; 0 z^4; 8*x^3*y - 4*x^3 - 4*x^2*y + 2*x^2 + 2*x*y - x - y x; x^4 0]
M = SubquoModule(M1, M2)
fr = free_resolution(M, length = 9)
@test all(iszero, homology(fr)[2:end])
end

@testset "Prune With Map" begin
Expand Down
Loading