diff --git a/neuralprophet/forecaster.py b/neuralprophet/forecaster.py index b514c5fe6..b02c2a6cb 100644 --- a/neuralprophet/forecaster.py +++ b/neuralprophet/forecaster.py @@ -1070,7 +1070,7 @@ def fit( or any(value != 1 for value in self.num_seasonalities_modelled_dict.values()) ) - ##### Data Setup, and Training Setup ##### + # Data Setup, and Training Setup # Train Configuration: overwrite self.config_train with user provided values if learning_rate is not None: self.config_train.learning_rate = learning_rate @@ -1213,8 +1213,8 @@ def fit( if self.config_train.learning_rate is None: assert not self.fitted, "Learning rate must be provided for re-training a fitted model." - ## Init a separate Model, Loader and Trainer copy for LR finder (optional, done for safety) - ## Note Leads to a CUDA issue. Needs to be fixed before enabling this feature. + # Init a separate Model, Loader and Trainer copy for LR finder (optional, done for safety) + # Note Leads to a CUDA issue. Needs to be fixed before enabling this feature. # model_lr_finder = self._init_model() # loader_lr_finder = DataLoader( # dataset, diff --git a/neuralprophet/time_dataset.py b/neuralprophet/time_dataset.py index ba598d3d0..242dc31db 100644 --- a/neuralprophet/time_dataset.py +++ b/neuralprophet/time_dataset.py @@ -599,6 +599,7 @@ def sort_regressor_names(self, config): multiplicative_regressors_names.append(reg) return additive_regressors_names, multiplicative_regressors_names + class GlobalTimeDataset(TimeDataset): def __init__( self, diff --git a/neuralprophet/time_net.py b/neuralprophet/time_net.py index b1318d08a..2a2e56c90 100644 --- a/neuralprophet/time_net.py +++ b/neuralprophet/time_net.py @@ -609,7 +609,7 @@ def forward( # Unpack and process covariates covariates_input = None - if self.config_lagged_regressors: + if self.config_lagged_regressors and self.config_lagged_regressors.regressors is not None: covariates_input = self.features_extractor.extract_component(component_name="lagged_regressors") covariates = self.forward_covar_net(covariates=covariates_input) additive_components += covariates diff --git a/neuralprophet/utils_time_dataset.py b/neuralprophet/utils_time_dataset.py index b58b4ba93..a0f2a6fd4 100644 --- a/neuralprophet/utils_time_dataset.py +++ b/neuralprophet/utils_time_dataset.py @@ -95,8 +95,8 @@ def extract_lags(self): def extract_lagged_regressors(self): lagged_regressors = OrderedDict() - if self.lagged_regressor_config: - for name, lagged_regressor in self.lagged_regressor_config.items(): + if self.lagged_regressor_config is not None and self.lagged_regressor_config.regressors is not None: + for name, lagged_regressor in self.lagged_regressor_config.regressors.items(): lagged_regressor_key = f"lagged_regressor_{name}" if lagged_regressor_key in self.feature_indices: lagged_regressor_start_idx, _ = self.feature_indices[lagged_regressor_key] @@ -217,12 +217,14 @@ def pack_lagged_regerssors_component(df_tensors, feature_list, feature_indices, """ Stack the lagged regressor features. """ - if config_lagged_regressors: - lagged_regressor_tensors = [df_tensors[name].unsqueeze(-1) for name in config_lagged_regressors.keys()] + if config_lagged_regressors is not None and config_lagged_regressors.regressors is not None: + lagged_regressor_tensors = [ + df_tensors[name].unsqueeze(-1) for name in config_lagged_regressors.regressors.keys() + ] stacked_lagged_regressor_tensor = torch.cat(lagged_regressor_tensors, dim=-1) feature_list.append(stacked_lagged_regressor_tensor) num_features = stacked_lagged_regressor_tensor.size(-1) - for i, name in enumerate(config_lagged_regressors.keys()): + for i, name in enumerate(config_lagged_regressors.regressors.keys()): feature_indices[f"lagged_regressor_{name}"] = ( current_idx + i, current_idx + i + 1,