From d9b9cd598e49f09aa020d69224787750eb83cc21 Mon Sep 17 00:00:00 2001 From: Maisa Ben Salah <76703998+MaiBe-ctrl@users.noreply.github.com> Date: Mon, 17 Jun 2024 14:05:39 -0700 Subject: [PATCH] [minor] Support io.bytes output (#1583) * add io buffer support * added tests * remove typealias --------- Co-authored-by: Maisa Ben Salah --- neuralprophet/utils.py | 20 ++++++++++++-------- tests/test_utils.py | 32 ++++++++++++++++++++++++++++++++ 2 files changed, 44 insertions(+), 8 deletions(-) diff --git a/neuralprophet/utils.py b/neuralprophet/utils.py index d5fabe203..168d55f67 100644 --- a/neuralprophet/utils.py +++ b/neuralprophet/utils.py @@ -5,7 +5,7 @@ import os import sys from collections import OrderedDict -from typing import TYPE_CHECKING, Iterable, Optional, Union +from typing import TYPE_CHECKING, Iterable, Optional, Union, BinaryIO, IO import numpy as np import pandas as pd @@ -21,19 +21,23 @@ log = logging.getLogger("NP.utils") +FILE_LIKE = Union[str, os.PathLike, BinaryIO, IO[bytes]] -def save(forecaster, path: str): +def save(forecaster, path: FILE_LIKE): """Save a fitted Neural Prophet model to disk. Parameters: forecaster : np.forecaster.NeuralProphet input forecaster that is fitted - path : str - path and filename to be saved. filename could be any but suggested to have extension .np. + path : FILE_LIKE + Path and filename to be saved, or an in-memory buffer. Filename could be any but suggested to have extension .np. After you fitted a model, you may save the model to save_test_model.np >>> from neuralprophet import save >>> save(forecaster, "test_save_model.np") + >>> import io + >>> buffer = io.BytesIO() + >>> save(forecaster, buffer) """ # List of attributes to remove attrs_to_remove_forecaster = ["trainer"] @@ -69,13 +73,13 @@ def save(forecaster, path: str): setattr(forecaster.model, attr, value) -def load(path: str, map_location=None): - """retrieve a fitted model from a .np file that was saved by save. +def load(path: FILE_LIKE, map_location=None): + """retrieve a fitted model from a .np file or buffer that was saved by save. Parameters ---------- - path : str - path and filename to be saved. filename could be any but suggested to have extension .np. + path : FILE_LIKE + Path and filename to be saved, or an in-memory buffer. Filename could be any but suggested to have extension .np. map_location : str, optional specifying the location where the model should be loaded. If you are running on a CPU-only machine, set map_location='cpu' to map your storages to the CPU. diff --git a/tests/test_utils.py b/tests/test_utils.py index 3e965e03a..93ddc1073 100644 --- a/tests/test_utils.py +++ b/tests/test_utils.py @@ -3,6 +3,7 @@ import logging import os import pathlib +import io import pandas as pd import pytest @@ -66,6 +67,37 @@ def test_save_load(): pd.testing.assert_frame_equal(forecast, forecast2) pd.testing.assert_frame_equal(forecast, forecast3) +def test_save_load_io(): + df = pd.read_csv(PEYTON_FILE, nrows=NROWS) + m = NeuralProphet( + epochs=EPOCHS, + batch_size=BATCH_SIZE, + learning_rate=LR, + n_lags=6, + n_forecasts=3, + n_changepoints=0, + ) + _ = m.fit(df, freq="D") + future = m.make_future_dataframe(df, periods=3) + forecast = m.predict(df=future) + + # Save the model to an in-memory buffer + log.info("testing: save to buffer") + buffer = io.BytesIO() + save(m, buffer) + buffer.seek(0) # Reset buffer position to the beginning + + log.info("testing: load from buffer") + m2 = load(buffer) + forecast2 = m2.predict(df=future) + + buffer.seek(0) # Reset buffer position to the beginning for another load + m3 = load(buffer, map_location="cpu") + forecast3 = m3.predict(df=future) + + # Check that the forecasts are the same + pd.testing.assert_frame_equal(forecast, forecast2) + pd.testing.assert_frame_equal(forecast, forecast3) # TODO: add functionality to continue training # def test_continue_training():