-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy path卷积神经网络应用-mnist数据集分类.py
104 lines (78 loc) · 4.05 KB
/
卷积神经网络应用-mnist数据集分类.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
'''
@version: python3.6
@author: Administrator
@file: 卷积神经网络应用-mnist数据集分类.py
@time: 2019/09/05
'''
# 卷积层就是对图像像素进行特征提取,多个不同卷积核产生不同特征图,增加深度,减少参数
# 池化层就是降低分辨率,缩小尺寸,减少参数,加快计算
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
batch_size = 100 # 一个批次的大小,可优化
n_batch = mnist.train.num_examples // batch_size # 一共有多少个批次
# 权值初始化
def weight_variable(shape):
return tf.Variable(tf.truncated_normal(shape, stddev=0.1)) # 截断的正态分布
# 偏置值初始化
def bias_variable(shape):
return tf.Variable(tf.constant(0.1, shape=shape))
# 卷基层
def conv2d(x, W):
# x表示输入,是一个张量,W表示过滤器,即卷积核,strides表示步长,padding表示是否补零
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
# 池化层
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 定义两个占位符(训练数据集和标签)
x = tf.placeholder(tf.float32, [None, 784]) # 28*28
y = tf.placeholder(tf.float32, [None, 10])
# 将x转化为4d向量[batch,height,width,channel]
x_image = tf.reshape(x, [-1, 28, 28, 1])
# 初始化第一个卷积层的权值(卷积核)和偏置
w_con1 = weight_variable([5, 5, 1, 32]) # 5*5窗口大小,从一个平面中进行32次卷积,抽取32次特征
b_con1 = bias_variable([32]) # 每一次卷积对应一个偏置,所以32
# 将输入和权值进行卷积,加上偏置后激活,再进行池化
h_con1 = tf.nn.relu(conv2d(x_image, w_con1) + b_con1)
h_pool1 = max_pool_2x2(h_con1)
# 初始化第二个卷积层的权值(卷积核)和偏置
w_con2 = weight_variable([5, 5, 32, 64]) # 5*5窗口大小,64次卷积从32个平面中抽取64次特征
b_con2 = bias_variable([64]) # 每一次卷积对应一个偏置,所以32
# 将输入和权值进行卷积,加上偏置后激活,再进行池化
h_con2 = tf.nn.relu(conv2d(h_pool1, w_con2) + b_con2)
h_pool2 = max_pool_2x2(h_con2)
#28*28*1的图片第一次卷积后tensor的shape是28*28*32,第一次池化后是14*14*32
#第二次卷积后输出shape是14*14*64,第二次池化后是7*7*64
#第一个全连接层的权值和偏置
w_fc1=weight_variable([7*7*64,1024])
b_fc1=bias_variable([1024])
#池化后的输出扁平化为1维
h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
#第一个全连接层的输出
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,w_fc1)+b_fc1)
#神经元输出概率,防止过拟合
keep_prob=tf.placeholder(tf.float32)
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)
#第二个全连接层
w_fc2=weight_variable([1024,10])
b_fc2=bias_variable([10])
predict = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2) + b_fc2) # softmax将输出信号转化为概率值(10个概率值)
# 交叉熵代价函数
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=predict))
# 使用AdamOptimizer优化,使得loss最小
train_step = tf.train.AdamOptimizer(1e-4).minimize(loss)
# 初始化变量
init = tf.global_variables_initializer()
# 比较概率最大的标签是否相同,结果存放在一个布尔型列表中
correct_predict = tf.equal(tf.argmax(y, 1), tf.argmax(predict, 1)) # argmax返回一维张量中最大值所在的位置
# 求准确率
accuracy = tf.reduce_mean(tf.cast(correct_predict, tf.float32)) # reduce_mean求平均值
with tf.Session() as sess:
sess.run(init)
for epoch in range(21): # 可优化
for batch in range(n_batch): # 把所有图片训练一次
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys,keep_prob:0.7})
# 用测试数据来检验训练好的模型
acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels,keep_prob:1.0})
print("Iter " + str(epoch) + "Test accuracy" + str(acc))