Skip to content

ouyangshengduo/SenduoHttp

Repository files navigation

开篇废话

趁着周末两天的时间,跟着大神的脚步,把我们经常使用的网络框架OkHttp的源码好好跟了一下,初次观看,确实非常容易钻进去,搞得云里雾里,在大神的指导下,才勉强把整个逻辑走通。写这篇文章,也是希望自己脑袋里面,能对这个网络框架有一个整体的认识,了解它整体设计思想。

大概了解后,还是需要自己亲自动手,来手写当中的一些细节,加深自己理解,所以,接下来,我会给出OkHttp中设计的主线,以及模拟OkHttp,手写一个属于我们自己的网络框架。

废话就到此为止了,开始这次的学习之旅吧。。。


技术详情

1. OkHttp 的主线调用

关于OkHttp的使用,我这里就不说了,不清楚的可以,在简书里面搜索一下,应该有非常多文章来说明,我这里就大概说一下调用的主线流程。

第一步:使用者拿到OkHttpClient对象,一般我们都会声明成全局的一个对象
第二步:使用OkHttpClient对象来拿到一个RealCall对象
第三步:用这个对象,把我们的Request请求(请求包含一些服务器信息)加入到它的一个调度器
       这个调度器是通过控制执行/等待队列的线程池来调度我们传进去的网络请求
第四步:执行RealCall中网络请求,将请求结果返回给我们使用者,这一步中,OkHttp框架会帮我
       做很多优化处理,其中的责任链式的拦截器,就在这个步骤中实现

查看如下的图片,可能更清晰点, 主线.png

OkHttp中拦截器的整体调用逻辑,可以查看下面这张图,可以说非常清晰了,细节地方,自己可以去查看源码了:

OkHttp拦截器.png

对于当中具体调用细节,我这里就不再讲述了,可以根据手写的简易OkHttp框架来对它们有一个整体的认识。

2. 模拟OkHttp,手写简易Http框架

对OkHttp的设计思路有一个整体的认识后,自己手写一个简易版的Http框架,加深一下对OkHttp源码的认识。手写Http框架,当中能够学到以下知识点:

  1.对于http协议能够有熟悉的认识
  2.线程池的项目实践
  3.建造者模式的项目实践
  4.socket层的字节流处理
  5.责任链模式的项目实践,熟悉OkHttp中的责任链模式的拦截器

首先,根据使用者习惯,完成HttpClient的功能(建造者模式):

public class HttpClient {

    //设置调度器
    private Dispather dispather;

	//声明拦截器
    private List<Interceptor> interceptors;

	//尝试次数
    private int retryTimes;

	//连接池
    private ConnectionPool connectionPool;

    public int getRetryTimes() {
        return retryTimes;
    }

    public Dispather getDispather() {
        return dispather;
    }

    public List<Interceptor> getInterceptors() {
        return interceptors;
    }

    public ConnectionPool getConnectionPool() {
        return connectionPool;
    }

    /**
     * 构造方法
     */
    public HttpClient(Builder builder){
        this.dispather = builder.dispather;
        this.interceptors = builder.interceptors;
        this.retryTimes = builder.retryTimes;
        this.connectionPool = builder.connectionPool;
    }

    /**
     * 生成一个网络请求Call对象实例
     * @param request
     * @return
     */
    public Call newCall(Request request){
        return new Call(this,request);
    }

    //TODO 建造对象
    public static final class Builder{

        Dispather dispather;
        List<Interceptor> interceptors = new ArrayList<>();
        int retryTimes;
        ConnectionPool connectionPool;

        public Builder addInterceptors(Interceptor interceptor){
            interceptors.add(interceptor);
            return this;
        }

        public Builder setDispather(Dispather dispather){
            this.dispather = dispather;
            return this;
        }

        public Builder setRetryTimes(int retryTimes){
            this.retryTimes = retryTimes;
            return this;
        }

        public Builder setConnectionPool(ConnectionPool connectionPool){
            this.connectionPool = connectionPool;
            return this;
        }


        public HttpClient build(){

            if(null == dispather){
                dispather = new Dispather();
            }

            if(null == connectionPool){
                connectionPool = new ConnectionPool();
            }
            return new HttpClient(this);
        }
    }
}

使用者能够通过设置失败重试次数,自定义拦截器构造一个httpClient对象

得到HttpClient对象后,就能拿到Call对象了,以下是Call里面的实现:

public class Call {

    private HttpClient httpClient;
    private Request request;

    public Request getRequest() {
        return request;
    }

    public HttpClient getHttpClient() {
        return httpClient;
    }

    //TODO 是否被执行过
    boolean executed;

    //TODO 是否被取消了
    boolean canceled;

    public boolean isCanceled() {
        return canceled;
    }

    public Call(HttpClient httpClient, Request request){
        this.httpClient = httpClient;
        this.request = request;
    }




    /**
     * 获取返回
     * @return
     * @throws IOException
     */
    Response getResponse() throws IOException{
        ArrayList<Interceptor> interceptors = new ArrayList<>();
        interceptors.addAll(httpClient.getInterceptors());
        interceptors.add(new RetryInterceptor());
        interceptors.add(new HeadersInterceptor());
        interceptors.add(new ConnectionInterceptor());
        interceptors.add(new CallServiceInterceptor());
        InterceptorChain interceptorChain = new InterceptorChain(interceptors,0,this,null);
        Response response = interceptorChain.proceed();
        return response;
    }


    /**
     * 将Call对象放到调度器里面去执行,如果已经加过了,就不能加了
     * @param callback
     * @return
     */
    public Call enqueue(Callback callback){

        synchronized (this){
            if(executed){
                throw new IllegalStateException("This Call Already Executed!");
            }
            executed = true;
        }
        httpClient.getDispather().enqueue(new AsyncCall(callback));
        return this;
    }


    final class AsyncCall implements Runnable{

        private Callback callback;

        public AsyncCall(Callback callback){
            this.callback = callback;
        }

        @Override
        public void run() {

            boolean signalledCallback = false;
            try {
                Response response = getResponse();
                if(canceled){
                    signalledCallback = true;
                    callback.onFailure(Call.this,new IOException("this task had canceled"));
                }else{
                    signalledCallback = true;
                    callback.onResponse(Call.this,response);
                }
            } catch (IOException e) {
                if(!signalledCallback){
                    callback.onFailure(Call.this,e);
                }
            } finally {
                //将这个任务从调度器移除
                httpClient.getDispather().finished(this);
            }
        }

        public String getHost(){
            return request.getHttpUrl().getHost();
        }
    }
}

Call类中的AsyncCall线程,是请求真正开始的地方,使用者调用enqueue的时候,只是把这个AsyncCall线程添加到调度器Dispather的线程池,其中,Dispacher中的实现如下:

public class Dispather {

    //TODO 最多同时请求的数量
    private int maxRequests;

    //TODO 同一个host最多允许请求的数量
    private int maxRequestPreHost;

    public Dispather(){
        this(64,5);
    }

    public Dispather(int maxRequests,int maxRequestPreHost){
        this.maxRequestPreHost = maxRequestPreHost;
        this.maxRequests = maxRequests;
    }

    private ExecutorService executorService;//声明一个线程池

    //TODO 等待双端队列,双端比较适合增加与删除
    private final Deque<Call.AsyncCall> readyAsyncCalls = new ArrayDeque<>();

    //TODO 运行中的双端队列
    private final Deque<Call.AsyncCall> runningAsyncCalls = new ArrayDeque<>();


    /**
     * 线程池的初始化
     * @return
     */
    public synchronized ExecutorService initExecutorService(){

        if(null == executorService){
            //这里只是给这个线程起一个名字
            ThreadFactory threadFactory = new ThreadFactory() {
                @Override
                public Thread newThread(@NonNull Runnable runnable) {
                    Thread thread = new Thread(runnable,"Http Client Thread");
                    return thread;
                }
            };
            //这里按照OkHttp的线程池样式来创建,单个线程在闲置的时候保留60秒
            executorService = new ThreadPoolExecutor(0,Integer.MAX_VALUE,60L, TimeUnit.SECONDS,new SynchronousQueue<Runnable>(),threadFactory);
        }
        return executorService;
    }

    /**
     * 将线程加入到线程池队列
     * @param asyncCall
     */
    public void enqueue(Call.AsyncCall asyncCall){
        Log.e("Dispatcher", "同时有:" + runningAsyncCalls.size());
        Log.e("Dispatcher", "host同时有:" + getRunningPreHostCount(asyncCall));
        //TODO 首先判断正在运行的队列是否已经满了,而且同一个host请求的是否已经超过规定的数量
        if(runningAsyncCalls.size() < maxRequests && getRunningPreHostCount(asyncCall) < maxRequestPreHost){
            Log.e("Dispatcher", "提交执行");
            runningAsyncCalls.add(asyncCall);
            initExecutorService().execute(asyncCall);
        }else{
            //不满足条件,就加到等待队列
            Log.e("Dispatcher", "等待执行");
            readyAsyncCalls.add(asyncCall);
        }
    }

    /**
     * 获取同一host在正在运行队列中的数量
     * @param asyncCall
     * @return
     */
    private int getRunningPreHostCount(Call.AsyncCall asyncCall) {
        int count = 0;
        for(Call.AsyncCall runningAsyncCall : runningAsyncCalls){
            if(runningAsyncCall.getHost().equals(asyncCall.getHost())){
                count ++;
            }
        }
        return count;
    }

    public void finished(Call.AsyncCall asyncCall){

        synchronized (this){
            runningAsyncCalls.remove(asyncCall);

            checkReadyCalls();
        }

    }

    /**
     * 检查是否可以运行等待中的请求
     */
    private void checkReadyCalls() {
        //达到了同时请求最大数
        if(runningAsyncCalls.size() >= maxRequests){
            return;
        }
        //没有等待执行的任务
        if(readyAsyncCalls.isEmpty()){
            return;
        }

        Iterator<Call.AsyncCall> asyncCallIterator = readyAsyncCalls.iterator();
        while(asyncCallIterator.hasNext()){
            Call.AsyncCall asyncCall = asyncCallIterator.next();
            //如果获得的等待执行的任务 执行后 小于host相同最大允许数 就可以去执行
            if(getRunningPreHostCount(asyncCall) < maxRequestPreHost){
                asyncCallIterator.remove();
                runningAsyncCalls.add(asyncCall);
                executorService.execute(asyncCall);
            }

            if(runningAsyncCalls.size() >= maxRequests){
                return;
            }
        }

    }
}

调度器中只是负责把添加进来的请求进行按序执行管理,真正执行,还是在AsyncCall线程中run方法,其中的责任链式的拦截器,也在这里面进行添加,执行。 我这里自己手写的拦截器,没有像OkHttp那么全而细,知道它的设计思想后,自己只是手动实现一个简单的责任链拦截器,其中包括

1.重试拦截器
2.Http头拦截器
3.选择有效socket连接的拦截器
4.socket通信拦截器

这个顺序是不能随意调换的,就跟工厂里面的流水线一样,一步一步往下走的。 首先,实现的是重试拦截器

public class RetryInterceptor implements Interceptor {
    @Override
    public Response intercept(InterceptorChain interceptorChain) throws IOException {
        Log.e("interceprot", "重试拦截器....");
        Call call = interceptorChain.call;
        IOException ioException = null;

        for(int i = 0 ; i < call.getHttpClient().getRetryTimes(); i ++){

            if(call.isCanceled()){
                throw new IOException("this task had canceled");
            }

            try {
                Response response = interceptorChain.proceed();
                return response;
            }catch (IOException e){
                ioException = e;
            }
        }
        throw ioException;
    }
}

然后是Http头处理的拦截器

public class HeadersInterceptor implements Interceptor {
    @Override
    public Response intercept(InterceptorChain interceptorChain) throws IOException {

        Log.e("interceprot","Http头拦截器....");

        Request request = interceptorChain.call.getRequest();
        Map<String,String> headers = request.getHeaders();
        if(!headers.containsKey(HttpCodec.HEAD_HOST)){
            headers.put(HttpCodec.HEAD_HOST,request.getHttpUrl().getHost());
        }
        if(!headers.containsKey(HttpCodec.HEAD_CONNECTION)) {
            headers.put(HttpCodec.HEAD_CONNECTION, HttpCodec.HEAD_VALUE_KEEP_ALIVE);
        }

        if(null != request.getRequestBody()){
            String contentType = request.getRequestBody().getContentType();
            if(null != contentType){
                headers.put(HttpCodec.HEAD_CONTENT_TYPE,contentType);
            }

            long contentLength = request.getRequestBody().getContentLength();

            if(-1 != contentLength){
                headers.put(HttpCodec.HEAD_CONTENT_LENGTH,Long.toString(contentLength));
            }
        }
        return interceptorChain.proceed();
    }
}

接着是选择可用socket连接的拦截器

public class ConnectionInterceptor implements Interceptor {
    @Override
    public Response intercept(InterceptorChain interceptorChain) throws IOException {
        Log.e("interceptor", "获取连接拦截器");
        Request request = interceptorChain.call.getRequest();
        HttpClient httpClient = interceptorChain.call.getHttpClient();
        HttpUrl httpUrl = request.getHttpUrl();

        HttpConnection httpConnection = httpClient.getConnectionPool().getHttpConnection(httpUrl.getHost(),httpUrl.getPort());
        if(null == httpConnection){
            httpConnection = new HttpConnection();
        }else{
            Log.e("interceptor", "从连接池中获得连接");
        }
        httpConnection.setRequest(request);

        try {
            Response response = interceptorChain.proceed(httpConnection);
            if (response.isKeepAlive()){
                httpClient.getConnectionPool().putHttpConnection(httpConnection);
            }else{
                httpConnection.close();
            }
            return response;
        }catch (IOException e){
            httpConnection.close();
            throw e;
        }
    }
}

把请求的配置信息都配置好后,最后,交给socket去通信,去解析,就是socket通信拦截器了:

public class CallServiceInterceptor implements Interceptor {
    @Override
    public Response intercept(InterceptorChain interceptorChain) throws IOException {

        Log.e("interceptor", "通信拦截器");

        HttpConnection httpConnection = interceptorChain.httpConnection;
        HttpCodec httpCodec = new HttpCodec();
        InputStream inputStream = httpConnection.call(httpCodec);

        //获取服务器返回的响应行 HTTP/1.1 200 OK\r\n
        String statusLine = httpCodec.readLine(inputStream);

        //获取服务器返回的响应头
        Map<String,String> headers = httpCodec.readHeaders(inputStream);

        //根据Content-Length或者Transfer-Encoding(分块)计算响应体的长度
        int contentLength = -1;
        if(headers.containsKey(HttpCodec.HEAD_CONTENT_LENGTH)){
            contentLength = Integer.valueOf(headers.get(HttpCodec.HEAD_CONTENT_LENGTH));
        }
        //是否为分块编码
        boolean isChunked = false;
        if(headers.containsKey(HttpCodec.HEAD_TRANSFER_ENCODING)){
            isChunked = headers.get(HttpCodec.HEAD_TRANSFER_ENCODING).equalsIgnoreCase(HttpCodec.HEAD_VALUE_CHUNKED);
        }

        //获取服务器响应体

        String body = null;
        if(contentLength > 0){
            byte[] bodyBytes = httpCodec.readBytes(inputStream,contentLength);
            body = new String(bodyBytes,HttpCodec.ENCODE);
        }else if(isChunked){
            body = httpCodec.readChunked(inputStream,contentLength);
        }

        // HTTP/1.1 200 OK\r\n status[0] = "HTTP/1.1",status[1] = "200",status[2] = "OK\r\n"
        String[] status = statusLine.split(" ");

        //根据响应头中的Connection的值,来判断是否能够复用连接
        boolean isKeepAlive = false;
        if(headers.containsKey(HttpCodec.HEAD_CONNECTION)){
            isKeepAlive = headers.get(HttpCodec.HEAD_CONNECTION).equalsIgnoreCase(HttpCodec.HEAD_VALUE_KEEP_ALIVE);
        }

        //更新此请求的最新使用时间,作用于线程池的清理工作
        httpConnection.updateLastUseTime();

        return new Response(Integer.valueOf(status[1]),contentLength,headers,body,isKeepAlive);
    }
}

经过以上四个拦截器后,使用者就能够正常使用http或者https的请求了。这里面还有一些额外处理的类,我这里就没有给出来了,具体的可以去我的github上查看项目源码,注释写了蛮多,应该很好理解。

关于此项目的源代码,在文章最后,会提供github地址,欢迎star

干货总结

阅读框架源码,说真的,确实是一件非常蛋疼的事,但是为了提升自己,却不得不去啃这个硬骨头,学习他人优秀的设计思想为己所用。只有积累的足够多方法之后,我们才能真正得去创造。

对于我们项目中框架的使用,会引入很多不一样的框架,比如retrofit(okhttp),glide,greenDao数据库框架,arouter路由框架,rxjava,butterknife,以及一些其他的第三方自定义控件等,就会不知不觉是我们的项目越发的庞大,而且比较难以维护,所以,建议我们自己项目,能够尽量自己手写相关的框架,而不要直接引用别人的(我个人的愿景,不喜勿喷)。

希望通过此文章以及源码,能够学习到以下知识点,也不枉我码了那么多字:

  1.对于http协议能够有熟悉的认识
  2.线程池的项目实践
  3.建造者模式的项目实践
  4.socket层的字节流处理
  5.责任链模式的项目实践,熟悉OkHttp中的责任链模式的拦截器

接下来的日子,希望能够对数据库框架,路由框架,图片加载框架,换肤框架,热更新框架等框架,进行熟悉,然后给出自己手写的简易版本,提升自身对于这些框架的认识。

以下是我的博客地址:

项目的简书地址

About

模拟OkHttp,手写简易版网络访问框架

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages