-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluation.py
133 lines (104 loc) · 3.99 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import numpy as np
from utils import dice_ratio, ModHausdorffDist
from generate_tfrecord import load_subject
"""Perform evaluation in terms of dice ratio and 3D MHD.
"""
################################################################################
# Arguments
################################################################################
RAW_DATA_DIR = '/data/paddy696/InfantBrain/RawData'
LABEL_DIR = '/data/paddy696/InfantBrain/tfrecords_full'
PRED_DIR = './results'
PRED_ID = 10 # 1-10
PATCH_SIZE = 32
CHECKPOINT_NUM = 153000
OVERLAP_STEPSIZE = 8
################################################################################
# Functions
################################################################################
## One Hot Encoding Module
def one_hot(label):
'''Convert label (d,h,w) to one-hot label (d,h,w,num_class).
'''
num_class = np.max(label) + 1
return np.eye(num_class)[label]
def MHD_3D(pred, label):
'''Compute 3D MHD for a single class.
Args:
pred: An array of size [Depth, Height, Width], with only 0 or 1 values
label: An array of size [Depth, Height, Width], with only 0 or 1 values
Returns:
3D MHD for a single class
'''
D, H, W = label.shape
pred_d = np.array([pred[:, i, j] for i in range(H) for j in range(W)])
pred_h = np.array([pred[i, :, j] for i in range(D) for j in range(W)])
pred_w = np.array([pred[i, j, :] for i in range(D) for j in range(H)])
label_d = np.array([label[:, i, j] for i in range(H) for j in range(W)])
label_h = np.array([label[i, :, j] for i in range(D) for j in range(W)])
label_w = np.array([label[i, j, :] for i in range(D) for j in range(H)])
MHD_d = ModHausdorffDist(pred_d, label_d)[0]
MHD_h = ModHausdorffDist(pred_h, label_h)[0]
MHD_w = ModHausdorffDist(pred_w, label_w)[0]
ret = np.mean([MHD_d, MHD_h, MHD_w])
print('--->MHD d:', MHD_d)
print('--->MHD h:', MHD_h)
print('--->MHD w:', MHD_w)
# print('--->avg:', ret)
return ret
def Evaluate(label_dir, pred_dir, pred_id, patch_size, checkpoint_num,
overlap_step):
print('Perform evaluation for subject-%d:' % pred_id)
print('Loading label...')
label_file = os.path.join(label_dir, 'subject-%d-label.npy' % pred_id)
assert os.path.isfile(label_file), \
('Run generate_tfrecord.py to generate the label file.')
label = np.load(label_file)
print('Check label: ', label.shape, np.max(label))
print('Loading predition...')
pred_file = os.path.join(pred_dir,
'preds-%d-sub-%d-overlap-%d-patch-%d.npy' % \
(checkpoint_num, pred_id, overlap_step, patch_size))
assert os.path.isfile(pred_file), \
('Run main.py --option=predict to generate the prediction results.')
pred = np.load(pred_file)
print('Check pred: ', pred.shape, np.max(pred))
print('Extract pred and label for each class...')
label_one_hot = one_hot(label)
pred_one_hot = one_hot(pred)
print('Check shape: ', label_one_hot.shape, pred_one_hot.shape)
# Separate each class. 0 corresponds to the background class (ignore).
csf_pred = pred_one_hot[:,:,:,1]
csf_label = label_one_hot[:,:,:,1]
gm_pred = pred_one_hot[:,:,:,2]
gm_label = label_one_hot[:,:,:,2]
wm_pred = pred_one_hot[:,:,:,3]
wm_label = label_one_hot[:,:,:,3]
# evaluate dice ratio
print('Evaluate dice ratio...')
csf_dr = dice_ratio(csf_pred, csf_label)
print('--->CSF Dice Ratio:', csf_dr)
gm_dr = dice_ratio(gm_pred, gm_label)
print('--->GM Dice Ratio:', gm_dr)
wm_dr = dice_ratio(wm_pred, wm_label)
print('--->WM Dice Ratio:', wm_dr)
print('--->avg:', np.mean([csf_dr, gm_dr, wm_dr]))
# # evaluate MHD
# print('Evaluate 3D MHD (---SLOW---)...')
# csf_mhd = MHD_3D(csf_pred, csf_label)
# print('--->CSF MHD:', csf_mhd)
# gm_mhd = MHD_3D(gm_pred, gm_label)
# print('--->GM MHD:', gm_mhd)
# wm_mhd = MHD_3D(wm_pred, wm_label)
# print('--->WM MHD:', wm_mhd)
# print('--->avg:', np.mean([csf_mhd, gm_mhd, wm_mhd]))
print('Done.')
if __name__ == '__main__':
Evaluate(
label_dir=LABEL_DIR,
pred_dir=PRED_DIR,
pred_id=PRED_ID,
patch_size=PATCH_SIZE,
checkpoint_num=CHECKPOINT_NUM,
overlap_step=OVERLAP_STEPSIZE)