-
Notifications
You must be signed in to change notification settings - Fork 26
/
generate_training_data.py
executable file
·42 lines (35 loc) · 1.76 KB
/
generate_training_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import read_bvh
import numpy as np
from os import listdir
import os
def generate_traindata_from_bvh(src_bvh_folder, tar_traindata_folder):
print ("Generating training data for "+ src_bvh_folder)
if (os.path.exists(tar_traindata_folder)==False):
os.makedirs(tar_traindata_folder)
bvh_dances_names=listdir(src_bvh_folder)
for bvh_dance_name in bvh_dances_names:
name_len=len(bvh_dance_name)
if(name_len>4):
if(bvh_dance_name[name_len-4: name_len]==".bvh"):
print ("Processing "+bvh_dance_name)
dance=read_bvh.get_train_data(src_bvh_folder+bvh_dance_name)
np.save(tar_traindata_folder+bvh_dance_name+".npy", dance)
def generate_bvh_from_traindata(src_train_folder, tar_bvh_folder):
print ("Generating bvh data for "+ src_train_folder)
if (os.path.exists(tar_bvh_folder)==False):
os.makedirs(tar_bvh_folder)
dances_names=listdir(src_train_folder)
for dance_name in dances_names:
name_len=len(dance_name)
if(name_len>4):
if(dance_name[name_len-4: name_len]==".npy"):
print ("Processing"+dance_name)
dance=np.load(src_train_folder+dance_name)
dance2=[]
for i in range(dance.shape[0]/8):
dance2=dance2+[dance[i*8]]
print (len(dance2))
read_bvh.write_traindata_to_bvh(tar_bvh_folder+dance_name+".bvh",np.array(dance2))
generate_traindata_from_bvh("../train_data_bvh/indian/","../train_data_xyz/indian/")
#generate_traindata_from_bvh("../train_data_bvh/salsa/","../train_data_xyz/salsa/")
#generate_traindata_from_bvh("../train_data_bvh/martial/","../train_data_xyz/martial/")