Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fall back to using feature names when mapping #128

Closed
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
101 changes: 76 additions & 25 deletions scarf/mapping_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,16 +96,16 @@ def coral(source_data, target_data, assay, feat_key: str, cell_key: str, nthread


def _order_features(
s_assay,
t_assay,
s_feat_ids: np.ndarray,
source_ids: pd.Series,
target_ids: pd.Series,
source_hvgs: np.ndarray,
target_assay: Assay,
filter_null: bool,
exclude_missing: bool,
nthreads: int,
target_cell_key: str = "I",
) -> Tuple[np.ndarray, np.ndarray]:
s_ids = pd.Series(s_assay.feats.fetch_all("ids"))
t_ids = pd.Series(t_assay.feats.fetch_all("ids"))
t_idx = t_ids.isin(s_feat_ids)
t_idx = target_ids.isin(source_hvgs)
if t_idx.sum() == 0:
raise ValueError(
"ERROR: None of the features from reference were found in the target data"
Expand All @@ -118,30 +118,33 @@ def _order_features(
else:
t_idx[t_idx] = (
controlled_compute(
t_assay.rawData[:, list(t_idx[t_idx].index)][
t_assay.cells.active_index("I"), :
target_assay.rawData[:, list(t_idx[t_idx].index)][
target_assay.cells.active_index(target_cell_key), :
].sum(axis=0),
nthreads,
)
!= 0
)
t_idx = t_idx[t_idx].index
if exclude_missing:
s_idx = s_ids.isin(t_ids.values[t_idx])
s_idx = source_ids.isin(target_ids.values[t_idx])
else:
s_idx = s_ids.isin(s_feat_ids)
s_idx = source_ids.isin(source_hvgs)
s_idx = s_idx[s_idx].index
t_idx_map = {v: k for k, v in t_ids.to_dict().items()}
t_idx_map = {v: k for k, v in target_ids.to_dict().items()}
t_re_idx = np.array(
[t_idx_map[x] if x in t_idx_map else -1 for x in s_ids.values[s_idx]]
[t_idx_map[x] if x in t_idx_map else -1 for x in source_ids.values[s_idx]]
)
if len(s_idx) != len(t_re_idx):
raise AssertionError(
"ERROR: Feature ordering failed. Please report this issue. "
f"This is an unexpected scenario. Source has {len(s_idx)} features while target has "
f"{len(t_re_idx)} features"
)
return s_idx.values, t_re_idx
missing = (t_idx == -1).sum()
total = len(t_idx)
overlap = (total - missing) / total
return s_idx.values, t_re_idx, overlap


def align_features(
Expand Down Expand Up @@ -171,18 +174,66 @@ def align_features(
"""
from .writers import create_zarr_dataset

source_feat_ids = source_assay.feats.fetch(
"ids", key=source_cell_key + "__" + source_feat_key
)
s_idx, t_idx = _order_features(
source_assay,
target_assay,
source_feat_ids,
filter_null,
exclude_missing,
nthreads,
)
logger.info(f"{(t_idx == -1).sum()} features missing in target data")
id_overlap = 0
name_overlap = 0
s_idx_ids = None
t_idx_ids = None
s_idx_names = None
t_idx_names = None

try:
source_hvg_ids = source_assay.feats.fetch(
"ids", key=source_cell_key + "__" + source_feat_key
)
s_ids = pd.Series(source_assay.feats.fetch_all("ids"))
t_ids = pd.Series(target_assay.feats.fetch_all("ids"))
s_idx_ids, t_idx_ids, id_overlap = _order_features(
s_ids,
t_ids,
source_hvg_ids,
target_assay,
filter_null,
exclude_missing,
nthreads,
target_cell_key,
)

except ValueError:
logger.warning("Failed to align features by IDs")
if id_overlap < 0.25:
logger.warning("Attempting feature alignment by names")
try:
source_hvg_names = source_assay.feats.fetch(
"names", key=source_cell_key + "__" + source_feat_key
)
s_names = pd.Series(source_assay.feats.fetch_all("names"))
t_names = pd.Series(target_assay.feats.fetch_all("names"))
s_idx_names, t_idx_names, name_overlap = _order_features(
s_names,
t_names,
source_hvg_names,
target_assay,
filter_null,
exclude_missing,
nthreads,
target_cell_key,
)
except ValueError:
logger.warning("Failed to align features by names")

if name_overlap < 0.25 and id_overlap < 0.25:
raise ValueError(
"More than 75% of the features in the target data are missing in the source data. "
+ "Please check the feature keys and try again. "
)
if id_overlap > 0.25:
s_idx = s_idx_ids
t_idx = t_idx_ids
else:
logger.warning("Falling back to feature alignment by names")
s_idx = s_idx_names
t_idx = t_idx_names

normed_loc = f"normed__{source_cell_key}__{source_feat_key}"
norm_params = source_assay.z[normed_loc].attrs["subset_params"]
sorted_t_idx = np.array(sorted(t_idx[t_idx != -1]))
Expand Down
Loading