-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathp2p.py
178 lines (152 loc) · 5.63 KB
/
p2p.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import numpy as np
import os
from PIL import Image
from torch.utils.data import Dataset, DataLoader
from torchvision.utils import save_image
import torch
import albumentations as A
from albumentations.pytorch import ToTensorV2
TRAIN_DIR = "data/train"
VAL_DIR = "data/val"
LEARNING_RATE = 2e-4
BATCH_SIZE = 16
NUM_WORKERS = 2
IMAGE_SIZE = 256
CHANNELS_IMG = 3
L1_LAMBDA = 100
LAMBDA_GP = 10
NUM_EPOCHS = 7
LOAD_MODEL = False
SAVE_MODEL = False
CHECKPOINT_DISC = "disc.pth.tar"
CHECKPOINT_GEN = "gen.pth.tar"
both_transform = A.Compose(
[A.Resize(width=256, height=256),], additional_targets={"image0": "image"},
)
transform_only_input = A.Compose(
[
A.HorizontalFlip(p=0.5),
A.ColorJitter(p=0.2),
A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_pixel_value=255.0,),
ToTensorV2(),
]
)
transform_only_mask = A.Compose(
[
A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_pixel_value=255.0,),
ToTensorV2(),
]
)
class AnimuDataset(Dataset):
def __init__(self, root_dir):
self.root_dir = root_dir
self.list_files = os.listdir(self.root_dir)
def __len__(self):
return len(self.list_files)
def __getitem__(self, index):
img_file = self.list_files[index]
img_path = os.path.join(self.root_dir, img_file)
image = np.array(Image.open(img_path))
input_image = image[:, :512, :]
target_image = image[:, 512:, :]
augmentations = both_transform(image=input_image, image0=target_image)
input_image = augmentations["image"]
target_image = augmentations["image0"]
input_image = transform_only_input(image=input_image)["image"]
target_image = transform_only_mask(image=target_image)["image"]
return input_image, target_image
import torch
import torch.nn as nn
class CNNBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride):
super(CNNBlock, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
in_channels, out_channels, 4, stride, 1, bias=False, padding_mode="reflect"
),
nn.BatchNorm2d(out_channels),
nn.LeakyReLU(0.2),
)
def forward(self, x):
return self.conv(x)
class Block(nn.Module):
def __init__(self, in_channels, out_channels, down=True, act="relu", use_dropout=False):
super(Block, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 4, 2, 1, bias=False, padding_mode="reflect")
if down
else nn.ConvTranspose2d(in_channels, out_channels, 4, 2, 1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU() if act == "relu" else nn.LeakyReLU(0.2),
)
self.use_dropout = use_dropout
self.dropout = nn.Dropout(0.5)
self.down = down
def forward(self, x):
x = self.conv(x)
return self.dropout(x) if self.use_dropout else x
class Generator(nn.Module):
def __init__(self, in_channels=3, features=64):
super().__init__()
self.initial_down = nn.Sequential(
nn.Conv2d(in_channels, features, 4, 2, 1, padding_mode="reflect"),
nn.LeakyReLU(0.2),
)
self.down1 = Block(features, features * 2, down=True, act="leaky", use_dropout=False)
self.down2 = Block(
features * 2, features * 4, down=True, act="leaky", use_dropout=False
)
self.down3 = Block(
features * 4, features * 8, down=True, act="leaky", use_dropout=False
)
self.down4 = Block(
features * 8, features * 8, down=True, act="leaky", use_dropout=False
)
self.down5 = Block(
features * 8, features * 8, down=True, act="leaky", use_dropout=False
)
self.down6 = Block(
features * 8, features * 8, down=True, act="leaky", use_dropout=False
)
self.bottleneck = nn.Sequential(
nn.Conv2d(features * 8, features * 8, 4, 2, 1), nn.ReLU()
)
self.up1 = Block(features * 8, features * 8, down=False, act="relu", use_dropout=True)
self.up2 = Block(
features * 8 * 2, features * 8, down=False, act="relu", use_dropout=True
)
self.up3 = Block(
features * 8 * 2, features * 8, down=False, act="relu", use_dropout=True
)
self.up4 = Block(
features * 8 * 2, features * 8, down=False, act="relu", use_dropout=False
)
self.up5 = Block(
features * 8 * 2, features * 4, down=False, act="relu", use_dropout=False
)
self.up6 = Block(
features * 4 * 2, features * 2, down=False, act="relu", use_dropout=False
)
self.up7 = Block(features * 2 * 2, features, down=False, act="relu", use_dropout=False)
self.final_up = nn.Sequential(
nn.ConvTranspose2d(features * 2, in_channels, kernel_size=4, stride=2, padding=1),
nn.Tanh(),
)
def forward(self, x):
d1 = self.initial_down(x)
d2 = self.down1(d1)
d3 = self.down2(d2)
d4 = self.down3(d3)
d5 = self.down4(d4)
d6 = self.down5(d5)
d7 = self.down6(d6)
bottleneck = self.bottleneck(d7)
up1 = self.up1(bottleneck)
up2 = self.up2(torch.cat([up1, d7], 1))
up3 = self.up3(torch.cat([up2, d6], 1))
up4 = self.up4(torch.cat([up3, d5], 1))
up5 = self.up5(torch.cat([up4, d4], 1))
up6 = self.up6(torch.cat([up5, d3], 1))
up7 = self.up7(torch.cat([up6, d2], 1))
return self.final_up(torch.cat([up7, d1], 1))
from torchvision.datasets import ImageFolder