-
Notifications
You must be signed in to change notification settings - Fork 3
/
hul.c
779 lines (668 loc) · 18.6 KB
/
hul.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
/*
* hul.c
* Copyright (C) 2008, Tomasz Koziara (t.koziara AT gmail.com)
* ---------------------------------------------------------------
* convex hull in three dimensions according to the algorithm by
* Barber et al. "The Quickhull Algorithm for Convex Hulls"
* ACM Transactions on Mathematical Software, 1996
*/
/* This file is part of Solfec.
* Solfec is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* Solfec is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Solfec. If not, see <http://www.gnu.org/licenses/>. */
#include <stdlib.h>
#include <float.h>
#include "mem.h"
#include "err.h"
#include "alg.h"
#include "lis.h"
#include "set.h"
#include "hul.h"
#include "ext/predicates.h"
typedef struct vertex vertex;
typedef struct edge edge;
typedef struct face face;
struct vertex
{
double *v; /* input vertex */
vertex *n; /* next in a list */
};
struct edge
{
double *v [2]; /* edge vertices in CCW order */
face *f; /* a neighbouring face through this edge */
edge *n; /* next edge in a list */
};
struct face
{
double pla [4];
vertex *v, *w; /* list of facial vertices 'v' and the furthest vertex 'w' */
edge *e; /* list of edges (and implicitly, the list of neighbours */
face *n; /* next face in a list */
char marked; /* marker used for visible faces */
TRI *tri; /* auxiliary adjacent triangle (used to create the output table) */
};
/* robust orientation */
static double orient (face *f, double *d)
{
double *a, *b, *c;
edge *e1, *e2;
e1 = f->e;
e2 = e1->n;
a = e1->v[0];
b = e1->v[1];
c = e2->v[1];
return orient3d (c, b, a, d);
}
/* set up facial plane */
static int setplane (face *f)
{
double ba [3], cb [3];
edge *e1, *e2;
e1 = f->e; e2 = e1->n;
SUB (e1->v[1], e1->v[0], ba);
SUB (e2->v[1], e2->v[0], cb);
PRODUCT (ba, cb, f->pla);
f->pla [3] = - DOT (e1->v[0], f->pla);
MAXABS (f->pla, ba [0]);
if (ba [0] == 0.0) return 0; /* degenerate case (colinear vertices) */
else return 1;
}
/* return edge of f pointing to g */
inline static edge* othere (face *f, face *g)
{
for (edge *e = f->e; e; e = e->n)
{
if (e->f == g) return e;
}
#if GEOMDEBUG
ASSERT_DEBUG (0, "Inconsitent topology (edge not found)");
#else
return NULL;
#endif
}
/* return vertex of f other than p and q */
inline static double* otherv (face *f, double *p, double *q)
{
for (edge *e = f->e; e; e = e->n)
{
if (e->v[0] != p && e->v[0] != q) return e->v [0];
}
#if GEOMDEBUG
ASSERT_DEBUG (0, "Inconsitent topology (vertex not found)");
#else
return NULL;
#endif
}
/* return edge starting at v */
inline static edge* edge_0 (face *f, double *v)
{
for (edge *e = f->e; e; e = e->n)
{
if (e->v [0] == v) return e;
}
#if GEOMDEBUG
ASSERT_DEBUG (0, "Inconsitent topology (edge not found)");
#else
return NULL;
#endif
}
/* return edge ending at v */
inline static edge* edge_1 (face *f, double *v)
{
for (edge *e = f->e; e; e = e->n)
{
if (e->v [1] == v) return e;
}
#if GEOMDEBUG
ASSERT_DEBUG (0, "Inconsitent topology (edge not found)");
#else
return NULL;
#endif
}
/* mend face with colinear vertices */
static int mendface (face *f)
{
edge *e, *h, *x, *y, *z, *w, *o;
double u [3], v [3], d, l [2];
double *a, *b, *c;
face *g;
for (e = f->e; e; e = e->n)
{
a = e->v [0];
b = e->v [1];
if (!(c = otherv (f, a, b))) return 0;
SUB (b, a, u);
SUB (c, a, v);
l[0] = LEN (u);
l[1] = LEN (v);
d = DOT (u, v);
if (d >= 0 && l[1] <= l[0]) break; /* c in [a, b] */
}
if (e)
{
a = c;
g = e->f;
if (!(h = othere (g, f))) return 0;
if (!(b = otherv (g, h->v[0], h->v[1]))) return 0;
if (!(x = edge_0 (f, a))) return 0;
if (!(y = edge_1 (g, b))) return 0;
if (!(z = edge_0 (g, b))) return 0;
if (!(w = edge_1 (f, a))) return 0;
if (!(o = othere (y->f, g))) return 0;
o->f = f;
if (!(o = othere (w->f, f))) return 0;
o->f = g;
e->v [0] = b;
e->v [1] = a;
h->v [0] = a;
h->v [1] = b;
e->n = NULL;
y->n = e;
x->n = y;
f->e = x;
h->n = NULL;
w->n = h;
z->n = w;
g->e = z;
#if GEOMDEBUG
ASSERT_DEBUG (setplane (f), "Zero normal (when mending face)");
ASSERT_DEBUG (setplane (g), "Zero normal (when mending face)");
#else
if (!(setplane (f) && setplane (g))) return 0;
#endif
}
#if GEOMDEBUG
else
{
ASSERT_DEBUG (0, "Face mending failed");
}
#else
else return 0;
#endif
return 1;
}
/* compare vertices by first coordinate */
static int vcmp (double **a, double **b)
{
if ((*a) [0] < (*b) [0]) return -1;
else if ((*a) [0] == (*b) [0]) return 0;
else return 1;
}
/* select vertices of an initial simplex and output the list of remaining vertices */
static int simplex_vertices (double *v, int n, MEM *mv, double *sv [4], vertex **out)
{
double **pv, **pp, **pq, **pe, **pn;
double d, a[3], b[3], c[3], u[3];
SET *points, *item;
MEM setmem;
vertex *x;
int i, j;
ERRMEM (pv = MEM_CALLOC (sizeof (double*) * n));
MEM_Init (&setmem, sizeof (SET), n);
points = NULL;
*out = NULL;
for (pp = pv, pe = pv+n; pp < pe; pp ++, v += 3)
{
SET_Insert (&setmem, &points, v, NULL); /* set of all input points */
*pp = v; /* vector of pointers to all input points */
}
/* sort input points along the first coordinate */
qsort (pv, n, sizeof (double*), (int (*)(const void*, const void*))vcmp);
d = 10 * GEOMETRIC_EPSILON; /* points are contained in [p - d, p + d] boxes */
for (pp = pv; pp < pe; pp = pn) /* for each sorted point */
{
for (pq = pp+1, pn = pe; pq < pe && (*pq) [0] - d < (*pp) [0] + d; pq ++) /* for each consecutive overlapping point */
{
for (i = 1; i < 3; i ++)
{
if ((*pq) [i] - d >= (*pp) [i] + d ||
(*pq) [i] + d <= (*pp) [i] - d) break;
}
if (i == 3) /* if it overlaps along all three directions */
{
SET_Delete (&setmem, &points, *pq, NULL); /* remove it from the input set */
}
else if (pn == pe) pn = pq; /* first non-overlaping point */
}
if (pn == pe) pn = pq; /* next point */
}
for (pp = pv, item = SET_First (points); item; pp ++, item = SET_Next (item)) /* for each filtered point */
{
*pp = item->data; /* overwrite 'pv' with filtered points */
}
pe = pp; /* mark the end */
/* find well separated vertices */
for (pp = pv, j = 0; pp < pe && j < 4; pp ++)
{
for (i = 0; i < j; i ++)
{
SUB (sv [i], *pp, u);
MAXABS (u, d);
if (d < 2.0 * GEOMETRIC_EPSILON) break; /* too close */
}
if (i == j) /* not too close, but maybe ... */
{
switch (j)
{
case 2:
{
SUB (sv [1], sv [0], a);
PRODUCT (u, a, b);
MAXABS (b, d);
if (d < GEOMETRIC_EPSILON) continue; /* ... colinear */
}
break;
case 3:
{
SUB (sv [1], sv [0], a);
SUB (sv [2], sv [1], b);
PRODUCT (a, b, c);
d = DOT (u, c);
if (ABS (d) < GEOMETRIC_EPSILON) continue; /* ... coplanar */
}
break;
}
sv [j++] = *pp; /* add vertex to initial simplex */
SET_Delete (&setmem, &points, *pp, NULL); /* remove it from the point set */
}
}
#if GEOMDEBUG
ASSERT_DEBUG (j == 4, "All input points coincide");
#else
if (j != 4)
{
MEM_Release (&setmem);
free (pv);
return 0;
}
#endif
for (item = SET_First (points); item; item = SET_Next (item)) /* for each remaining point */
{
ERRMEM (x = MEM_Alloc (mv));
x->v = item->data;
x->n = *out;
*out = x; /* put into the output list */
}
MEM_Release (&setmem);
free (pv);
return 1;
}
/* create a simplex and return the corresponding face list */
static face* simplex (MEM *me, MEM *mf, double *a, double *b, double *c, double *d)
{
edge *e [12] =
{ MEM_Alloc (me),
MEM_Alloc (me),
MEM_Alloc (me),
MEM_Alloc (me),
MEM_Alloc (me),
MEM_Alloc (me),
MEM_Alloc (me),
MEM_Alloc (me),
MEM_Alloc (me),
MEM_Alloc (me),
MEM_Alloc (me),
MEM_Alloc (me) }, *edg;
double *o [4] = {d, a, b, c}, *u;
int i;
face *f [4] =
{ MEM_Alloc (mf),
MEM_Alloc (mf),
MEM_Alloc (mf),
MEM_Alloc (mf) };
ERRMEM (e[0] && e[1] && e[2] && e[3] &&
e[4] && e[5] && e[6] && e[7] &&
e[8] && e[9] && e[10] && e[11] &&
f[0] && f[1] && f[2] && f[3]);
e [0]->v [0] = a;
e [0]->v [1] = b;
e [1]->v [0] = b;
e [1]->v [1] = c;
e [2]->v [0] = c;
e [2]->v [1] = a;
f [0]->e = e [0];
e [0]->n = e [1];
e [1]->n = e [2];
e [3]->v [0] = b;
e [3]->v [1] = d;
e [4]->v [0] = d;
e [4]->v [1] = c;
e [5]->v [0] = c;
e [5]->v [1] = b;
f [1]->e = e [3];
e [3]->n = e [4];
e [4]->n = e [5];
e [6]->v [0] = d;
e [6]->v [1] = a;
e [7]->v [0] = a;
e [7]->v [1] = c;
e [8]->v [0] = c;
e [8]->v [1] = d;
f [2]->e = e [6];
e [6]->n = e [7];
e [7]->n = e [8];
e [9 ]->v [0] = d;
e [9 ]->v [1] = b;
e [10]->v [0] = b;
e [10]->v [1] = a;
e [11]->v [0] = a;
e [11]->v [1] = d;
f [3]->e = e [9 ];
e [9]->n = e [10];
e[10]->n = e [11];
e [0]->f = f [3];
e [1]->f = f [1];
e [2]->f = f [2];
e [3]->f = f [3];
e [4]->f = f [2];
e [5]->f = f [0];
e [6]->f = f [3];
e [7]->f = f [0];
e [8]->f = f [1];
e [9 ]->f = f [1];
e [10]->f = f [0];
e [11]->f = f [2];
f [0]->n = f [1];
f [1]->n = f [2];
f [2]->n = f [3];
for (i = 0; i < 4; i ++)
{
#if GEOMDEBUG
ASSERT_DEBUG (setplane (f[i]), "Zero normal (when creating initial simplex)"); /* set face plane */
#else
if (!setplane (f[i])) return NULL; /* set face plane */
#endif
if (orient (f[i], o [i]) > 0.0) /* the other vertex should be behind => reorient the face */
{
for (edg = f[i]->e; edg; edg = edg->n) /* reverse order of edge vertices */
{ u = edg->v [0]; edg->v [0] = edg->v [1]; edg->v [1] = u; }
e [0] = f [i]->e; /* reverse edge list */
e [1] = e [0]->n;
e [2] = e [1]->n;
e [2]->n = e [1];
e [1]->n = e [0];
e [0]->n = NULL;
f [i]->e = e [2];
SCALE (f[i]->pla, -1.0); /* reverse plane normal */
f[i]->pla [3] *= -1.0;
}
}
return f [0];
}
/* mark faces visible from 'v'ertex */
static void mark (face *f, double *v, face **g)
{
double d = orient (f, v);
if (!f->marked && d > 0.0)
{
f->marked = 1;
for (edge *e = f->e; e; e = e->n) mark (e->f, v, g);
}
else if (d <= 0.0) *g = f;
}
/* return next CCW face after f around vertx v */
inline static face* nextaround (face *f, double *v)
{
edge *e;
for (e = f->e; e; e = e->n)
if (e->v [1] == v) return e->f;
#if GEOMDEBUG
ASSERT_DEBUG (0, "Inconsitent adjacency (in nextaround)");
#endif
return NULL;
}
/* walk behind the horizon (unvisible side)
* ridges and return consecutive CCW edges */
inline static edge* nextonridge (int m, edge *e, face **g)
{
if (g)
{
double *v = e->v[1];
face *f = e->f;
int n;
for (n = 1, f = nextaround (f, v); f && f->marked && n < m; f = nextaround (f, v)) n ++; /* walk around e->v[0] until unmarked face is found */
#if GEOMDEBUG
ASSERT_DEBUG (f && n < m, "Inconsitent topology => first edge on the ridge not found (1 in nextonridge)");
#else
if (!f || n == m) return NULL;
#endif
for (e = f->e; e && e->v [0] != v; e = e->n); /* find an edge adjacent to the marked region */
*g = f; /* record new unmarked face */
}
else
{
for (; e && (!e->f->marked); e = e->n); /* should be there for the first call */
#if GEOMDEBUG
ASSERT_DEBUG (e, "Inconsitent topology => first edge on the ridge not found (2 in nextonridge)");
#endif
}
return e;
}
static int testsimplex (face *h)
{
edge *e;
face *f;
int i, n;
for (; h; h = h->n)
{
for (e = h->e; e; e = e->n)
{
for (i = 0; i < 2; i ++)
{
for (n = 1, f = nextaround (h, e->v[i]); f && f != h && n < 4; f = nextaround (f, e->v[i])) n ++;
#if GEOMDEBUG
ASSERT_DEBUG (f && n == 3, "Incorrect adjacency in the initial simplex");
#else
if (!f || n != 3) return 0;
#endif
}
}
}
return 1;
}
/* compute convex hull */
TRI* hull (double *v, int n, int *m)
{
face *f, *g, *h, *head, *cur, *tail;
edge *e, *k, *i, *j, *ehead, *etail;
double d, dmax, *sv [4];
vertex *x, *y, *z, *l;
MEM mv, me, mf;
TRI *tri, *t;
MEM_Init (&mv, sizeof (vertex), n);
MEM_Init (&me, sizeof (edge), n);
MEM_Init (&mf, sizeof (face), n);
tri = NULL;
/* select vertices of an initial simplex into 'sv' */
if (!simplex_vertices (v, n, &mv, sv, &l)) goto error;
/* create the initial simplex */
if (!(h = simplex (&me, &mf, sv[0], sv[1], sv[2], sv[3]))) goto error;
if (!(testsimplex (h))) goto error;
/* initialise outside vertex lists */
for (f = h; f; f = f->n)
{
for (z = NULL, x = l, dmax = 0.0; x; x = y)
{
y = x->n;
d = orient (f, x->v);
if (d > 0.0)
{
if (d > dmax) /* and select maximal elements */
{
if (f->w)
{ f->w->n = f->v;
f->v = f->w; } /* move to the regular list */
f->w = x; /* set as maximal */
}
else /* insert into the regular list */
{ x->n = f->v;
f->v = x; }
/* update 'l' list */
if (z) z->n = y; /* skip one */
else l = y; /* update head */
}
else z = x; /* previous element staying in the list */
}
}
for (f = h; f && (!f->w); f = f->n); /* find first face with a nonempty vertex list */
while (f)
{
/* mark visible faces */
mark (f, f->w->v, &g);
/* loop over the ridge edges */
if (!g || !(k = e = nextonridge (n, g->e, NULL))) goto error;
ehead = etail = NULL;
head = tail = NULL;
do
{
/* create new face */
ERRMEM (cur = MEM_Alloc (&mf));
if (!tail) tail = cur; /* record last face */
ERRMEM (i = MEM_Alloc (&me));
i->v [0] = e->v [1]; /* first new edge is adjacent to 'e' => reversed */
i->v [1] = e->v [0];
i->f = g; /* first new edge is the neighbour of 'g' */
cur->e = i; /* include the edge into the new face's edge list */
ERRMEM (j = MEM_Alloc (&me));
j->v [0] = f->w->v; /* this is the top vertes */
j->v [1] = e->v [1];
j->n = cur->e; cur->e = j; /* maintain edge list */
ERRMEM (i = MEM_Alloc (&me));
i->v [0] = e->v [0];
i->v [1] = f->w->v; /* top vertex */
i->n = cur->e; cur->e = i; /* maintain edge list */
if (head) /* if there are already new faces in the list */
{ i->f = head; /* this edge's neighbour is the list head */
ehead->f = cur; } /* and head's edge neighbour is the current face */
else etail = i; /* or => set up tail's edge (to be connected at the end) */
cur->n = head; head = cur; /* maintain face list */
ehead = j; /* this is the head edge */
j = e; /* back up current outer edge => 'nextonridge' needs an old 'e->f' */
if (!(e = nextonridge (n, j, &g))) goto error; /* next outer edge along the visible set ridge */
j->f = cur; /* set up new adjacency (once the old 'e->f' was utilised) */
} while (e != k);
/* link tail and head */
ehead->f = tail;
etail->f = head;
/* free top vertex */
MEM_Free (&mv, f->w);
f->w = NULL;
/* for each new face */
for (g = head; g; g = g->n)
{
if (!setplane (g)) /* set up g->pla (returnes 0 if a degenerate triangle was found) */
{
if (!mendface (g)) goto error; /* vertices are colinear but not coincident (that case was eliminated by sorting and filtering) */
}
}
/* for each marked face f */
for (f = h; f; f = f->n)
{
if (f->marked)
{
if (f->w)
{ f->w->n = f->v; /* put the furthest vertex 'w' back into the 'v' list */
f->v = f->w; }
if (f->v)
{
/* for each new face g */
for (g = head; g; g = g->n)
{
/* for each v in f->v */
for (dmax = 0.0, l = NULL, x = f->v; x; x = y)
{
y = x->n;
d = orient (g, x->v);
if (d > 0.0) /* x is above g->pla */
{
if (d > dmax) /* and is maximal */
{
if (g->w)
{ g->w->n = g->v;
g->v = g->w; } /* move to the regular list */
g->w = x; /* set as maximal */
}
else /* insert into the regular list */
{ x->n = g->v;
g->v = x; }
if (l) l->n = y; /* x is removed from f->v */
else f->v = y;
}
else l = x; /* last not moved vertex */
}
}
}
}
}
/* for each marked face f */
for (f = h, h = NULL; f; f = g)
{
g = f->n;
if (f->marked)
{
/* delete all v in f->v */
for (x = f->v; x; x = y)
{ y = x->n; MEM_Free (&mv, x); }
/* delete all e in f->e */
for (e = f->e; e; e = i)
{ i = e->n; MEM_Free (&me, e); }
/* delete f */
MEM_Free (&mf, f);
}
else /* output unmarked faces */
{
f->n = h;
h = f;
}
}
/* append h with
* the new faces */
tail->n = h;
h = head;
/* select next face with nonempty vertex list */
for (f = h; f && (!f->w); f = f->n);
}
/* h contains faces of the convex hull;
* it be now translated into a table TRI[] */
for ((*m) = 0, f = h; f; f = f->n) (*m) ++; /* count output faces */
ERRMEM (tri = MEM_CALLOC ((*m) * sizeof (TRI))); /* output memory (faces are triangular) */
for (t = tri, f = h; f; f = f->n, t ++) /* translate each face into a triangle */
{
e = f->e; k = e->n; i = k->n;
COPY (f->pla, t->out); /* same normal */
t->ver [0] = e->v [0]; /* CCW ordered vertices */
t->ver [1] = k->v [0];
t->ver [2] = i->v [0];
#if GEOMDEBUG
if (e->f->tri) { ASSERT_DEBUG (TRI_Addadj (e->f->tri, t), "Too many triangle neighbours"); } /* called only once for each pair => after (***) ... */
if (k->f->tri) { ASSERT_DEBUG (TRI_Addadj (k->f->tri, t), "Too many triangle neighbours"); }
if (i->f->tri) { ASSERT_DEBUG (TRI_Addadj (i->f->tri, t), "Too many triangle neighbours"); }
#else
if (e->f->tri) if (!TRI_Addadj (e->f->tri, t)) goto error; /* called only once for each pair => after (***) ... */
if (k->f->tri) if (!TRI_Addadj (k->f->tri, t)) goto error;
if (i->f->tri) if (!TRI_Addadj (i->f->tri, t)) goto error;
#endif
f->tri = t; /* ... (***) has been executed for the first of neighbours */
}
for (t --; t >= tri; t --) TRI_Sortadj (t); /* sort adjacency lists */
goto done; /* skip error handling */
error:
if (tri) free (tri);
tri = NULL;
done:
/* clean up */
MEM_Release (&mv);
MEM_Release (&me);
MEM_Release (&mf);
return tri;
}