Skip to content

Latest commit

 

History

History
152 lines (118 loc) · 3.84 KB

README.md

File metadata and controls

152 lines (118 loc) · 3.84 KB

Pytorch-dl (Deep Learning with Pytorch)

This project implements the classification task using Transformer model. On IMDB sentiment analysis task it achieved a score of 85+ accuracy.

It also contains BERT training-

  • Transformer based Neural MT training and decoding
  • Training and fine tuning mBart for Neural MT (Experimental) (mBart)
  • Bert encoder (Default Bert)

Prerequisite

Quick Start

INSTALL Dependencies

pip3 install -r requirements.txt
python -m spacy download en

Train NMT model

Prepare data
cd examples/translation/
bash prepare-iwslt14.sh
cd -
bash prep.sh
Train model
bash train.sh
Decode the binarized validation data
bash decode.sh
Translate a text file
bash translate_file.sh

mBART training

Prepare data
cd examples/translation/
bash prepare-iwslt14.sh

# This will add language tag at the end of each segment in the corpu
sed -e 's/$/ <\/s> <EN>/' train.en > src-train-mbart.txt
sed -e 's/$/ <\/s> <DE>/' train.de >> src-train-mbart.txt

sed -e 's/^/<EN> /' train.en > temp-file.en
sed -e 's/^/<DE> /' train.de > temp-file.de

sed -e 's/$/ <\/s> <EN>/' temp-file.en > tgt-train-mbart.txt
sed -e 's/$/ <\/s> <DE>/' temp-file.de >> tgt-train-mbart.txt

sed -e 's/$/ <\/s> <EN>/' valid.en > src-valid-mbart.txt
sed -e 's/$/ <\/s> <DE>/' valid.de >> src-valid-mbart.txt

sed -e 's/^/<EN> /' valid.en > temp-file.en
sed -e 's/^/<DE> /' valid.de > temp-file.de

sed -e 's/$/ <\/s> <EN>/' temp-file.en > tgt-valid-mbart.txt
sed -e 's/$/ <\/s> <DE>/' temp-file.de >> tgt-valid-mbart.txt
rm temp-file.en temp-file.de

cd -
bash prep_mbart.sh
Train model
bash train_mbart.sh

Note: This model now could be directly used for NMT training as described in the above section. Simply provide the model path (--save_model) and it will be automatically used for further fine-tuning.

Also, its important to note that we must use the same vocab for corpus preparation, the one used for mbart training. Check the sample shell scripts in the following section for both corpus preparation and training.

Finetune NMT model
# This will add language tag at the end of each segment in the corpu
sed -e 's/$/ <\/s> <EN>/' train.en > src-train-finetune-mbart.txt
sed -e 's/^/<DE> /' train.de > temp-file.de
sed -e 's/$/ <\/s> <DE>/' temp-file.de > tgt-train-finetune-mbart.txt

sed -e 's/$/ <\/s> <EN>/' valid.en > src-valid-finetune-mbart.txt
sed -e 's/^/<DE> /' valid.de > temp-file.de
sed -e 's/$/ <\/s> <DE>/' temp-file.de > tgt-valid-finetune-mbart.txt
rm temp-file.de

bash prep_finetune_mbart_nmt.sh
Train model
bash finetune_mbart_nmt.sh

RoBerta/Bert without NSP training:

Prepare corpus
cd examples/translation/
bash prepare-iwslt14.sh
cat train.en > train-roberta.txt
cat train.de >> train-roberta.txt

cat valid.en > valid-roberta.txt
cat valid.de >> valid-roberta.txt

cd -
bash prep_roberta.sh
Train model
bash train_roberta.sh

IMDB classification:

$python classify.py

Author

Raj Nath Patel (patelrajnath@gmail.com)

Linkedin: https://ie.linkedin.com/in/raj-nath-patel-2262b024

Version

0.1

LICENSE

Copyright Raj Nath Patel 2020 - present

Pytorch-dl is a free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

You should have received a copy of the GNU General Public License along with Pytorch-dl project. If not, see http://www.gnu.org/licenses/.