-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
92 lines (76 loc) · 3.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
"""
Description : Train neural network model to predict one time step of M7
Options:
--signs=<need_extra_signs_for_log_mass>
--classification=<train_classification_net>
--scale=<scaler>
--model=<model_version>
"""
import numpy as np
from utils import standard_transform_x, standard_transform_y, get_model, train_model, create_report, calculate_stats, add_nn_arguments, log_full_norm_transform_x, log_tend_norm_transform_y, create_dataloader, create_test_dataloader
import torch.nn as nn
import torch
import torch.optim as optim
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def main(args):
#loading data
print('loading data...')
X_train = np.load('./data/aerosol_emulation_data/X_train.npy')
y_train = np.load('./data/aerosol_emulation_data/y_train.npy')
if args.mode == 'train':
X_test = np.load('./data/aerosol_emulation_data/X_val.npy')
y_test = np.load('./data/aerosol_emulation_data/y_val.npy')
else:
X_test = np.load('./data/aerosol_emulation_data/X_test.npy')
y_test = np.load('./data/aerosol_emulation_data/y_test.npy')
if args.old_data:
X_train = np.delete(X_train, [21,22],axis=1)
X_test = np.delete(X_test, [21,22],axis=1)
#calculate tendencies
y_train[:,:24] -= X_train[:,8:]
y_test[:,:24] -= X_test[:,8:]
stats = calculate_stats(X_train, y_train, X_test, y_test, args)
if args.signs:
y_train_sign = np.sign(y_train)
y_test_sign = np.sign(y_test)
if args.model == 'classification':
inds = [1,2,3,5,6,9,10,13,17,18,19]
y_train_signs = np.ones_like(y_train)
y_test_signs = np.ones_like(y_test)
y_train_signs[y_train<0] = 0
y_test_signs[y_test<0] = 0
y_train = y_train_signs[:,inds]
y_test = y_test_signs[:,inds]
#transform
if args.scale == 'z':
X_train = standard_transform_x(stats, X_train)
X_test = standard_transform_x(stats, X_test)
if not args.model == 'classification':
y_test= standard_transform_y(stats, y_test)
y_train = standard_transform_y(stats, y_train)
elif args.scale == 'log':
X_train = log_full_norm_transform_x(stats, X_train)
X_test = log_full_norm_transform_x(stats, X_test)
if not args.model == 'classification':
y_train = log_tend_norm_transform_y(stats, y_train)
y_test= log_tend_norm_transform_y(stats, y_test)
if args.signs:
X_train = np.concatenate((X_train, y_train_signs), axis=1)
X_test = np.concatenate((X_test, y_test_signs), axis=1)
print(y_train.shape, y_test.shape)
train_data = create_dataloader(X_train, y_train, args)
test_data = create_test_dataloader(X_test, y_test, args)
input_dim = X_train.shape[1]
output_dim = y_train.shape[1]
model = get_model(in_features=input_dim, out_features=output_dim, args=args, constraints_active=False)
if args.mode == 'train':
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
train_model(model=model, train_data=train_data, test_data=test_data, optimizer=optimizer, input_dim=input_dim, output_dim=output_dim, stats=stats, X_test=X_test, y_test=y_test, args=args)
model = get_model(in_features=input_dim, out_features=output_dim, args=args, constraints_active=True)
model.load_state_dict(torch.load('./models/'+args.model_id+'.pth') ['state_dict'])
model.to(device)
model.eval()
create_report(model, X_test, y_test, stats, args)
if __name__ == "__main__":
args = add_nn_arguments()
main(args)