forked from ljwolf/spenc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgendata.py
44 lines (35 loc) · 1.61 KB
/
gendata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
import spenc as spenc
import pysal as ps
import geopandas as gpd
import os
SEED = 1901
dir_self = os.path.dirname(__file__)
datadir = os.path.join(dir_self, 'spenc/tests/data')
if __name__ == "__main__":
nat = gpd.read_file(ps.examples.get_path("NAT.shp"))
natR = ps.weights.Rook.from_dataframe(nat)
names = nat.filter(like='90').columns.tolist() + nat.filter(like='89').columns.tolist()
X = nat[names].values
X = (X - X.mean(axis=0))/X.var(axis=0)
print('(1 of 5) doing 10k nodata')
np.random.seed(SEED)
labels = spenc.SPENC(n_clusters=10, random_state=SEED).fit(None, natR.sparse).labels_
labels.dump(os.path.join(datadir, 'nat_10k_nodata.ary'))
print('(2 of 5) doing 30k sampling')
np.random.seed(SEED)
labels = spenc.SPENC(n_clusters=30, random_state=SEED).sample(natR.sparse, n_samples=3)
labels.dump(os.path.join(datadir, 'nat_30k_randoms.ary'))
print('(3 of 5) doing 30k withdata')
np.random.seed(SEED)
labels = spenc.SPENC(n_clusters=30, gamma=.001, random_state=SEED).fit(X, natR.sparse).labels_
labels.dump(os.path.join(datadir, 'nat_30k_discovered.ary'))
print('(4 of 5) doing infk sampling')
np.random.seed(SEED)
labels = spenc.SPENC(n_clusters=np.inf, random_state=SEED).sample(natR.sparse, floor=20)
labels.dump(os.path.join(datadir, 'nat_infk_randoms.ary'))
print('(5 of 5) doing infk withdata')
np.random.seed(SEED)
labels = spenc.SPENC(n_clusters=np.inf, gamma=.001, random_state=SEED).fit(X, natR.sparse, floor=20).labels_
labels.dump(os.path.join(datadir, 'nat_infk_discovered.ary'))
print('done!')