-
Notifications
You must be signed in to change notification settings - Fork 9
/
interpreter.c
1294 lines (1028 loc) · 30.2 KB
/
interpreter.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: LGPL-2.1-or-later
/*
* Copyright (C) 2019-2021 Paul Cercueil <paul@crapouillou.net>
*/
#include "disassembler.h"
#include "interpreter.h"
#include "lightrec-private.h"
#include "optimizer.h"
#include "regcache.h"
#include <stdbool.h>
struct interpreter;
static u32 int_CP0(struct interpreter *inter);
static u32 int_CP2(struct interpreter *inter);
static u32 int_SPECIAL(struct interpreter *inter);
static u32 int_META(struct interpreter *inter);
static u32 int_REGIMM(struct interpreter *inter);
static u32 int_branch(struct interpreter *inter, u32 pc,
union code code, bool branch);
typedef u32 (*lightrec_int_func_t)(struct interpreter *inter);
static const lightrec_int_func_t int_standard[64];
struct interpreter {
struct lightrec_state *state;
struct block *block;
struct opcode *op;
u32 cycles;
bool delay_slot;
bool load_delay;
u16 offset;
};
static u32 int_get_branch_pc(const struct interpreter *inter)
{
return get_branch_pc(inter->block, inter->offset, 0);
}
static inline u32 int_get_ds_pc(const struct interpreter *inter, s16 imm)
{
return get_ds_pc(inter->block, inter->offset, imm);
}
static inline struct opcode *next_op(const struct interpreter *inter)
{
return &inter->op[1];
}
static inline u32 execute(lightrec_int_func_t func, struct interpreter *inter)
{
return (*func)(inter);
}
static inline u32 lightrec_int_op(struct interpreter *inter)
{
return execute(int_standard[inter->op->i.op], inter);
}
static inline u32 jump_skip(struct interpreter *inter)
{
inter->op = next_op(inter);
inter->offset++;
if (op_flag_sync(inter->op->flags)) {
inter->state->current_cycle += inter->cycles;
inter->cycles = 0;
}
return lightrec_int_op(inter);
}
static inline u32 jump_next(struct interpreter *inter)
{
inter->cycles += lightrec_cycles_of_opcode(inter->state, inter->op->c);
if (unlikely(inter->delay_slot))
return 0;
return jump_skip(inter);
}
static inline u32 jump_after_branch(struct interpreter *inter)
{
inter->cycles += lightrec_cycles_of_opcode(inter->state, inter->op->c);
if (unlikely(inter->delay_slot))
return 0;
inter->op = next_op(inter);
inter->offset++;
return jump_skip(inter);
}
static void update_cycles_before_branch(struct interpreter *inter)
{
u32 cycles;
if (!inter->delay_slot) {
cycles = lightrec_cycles_of_opcode(inter->state, inter->op->c);
if (!op_flag_no_ds(inter->op->flags) &&
has_delay_slot(inter->op->c))
cycles += lightrec_cycles_of_opcode(inter->state, next_op(inter)->c);
inter->cycles += cycles;
inter->state->current_cycle += inter->cycles;
inter->cycles = -cycles;
}
}
static bool is_branch_taken(const u32 *reg_cache, union code op)
{
switch (op.i.op) {
case OP_SPECIAL:
return op.r.op == OP_SPECIAL_JR || op.r.op == OP_SPECIAL_JALR;
case OP_J:
case OP_JAL:
return true;
case OP_BEQ:
return reg_cache[op.r.rs] == reg_cache[op.r.rt];
case OP_BNE:
return reg_cache[op.r.rs] != reg_cache[op.r.rt];
case OP_REGIMM:
switch (op.r.rt) {
case OP_REGIMM_BLTZ:
case OP_REGIMM_BLTZAL:
return (s32)reg_cache[op.r.rs] < 0;
case OP_REGIMM_BGEZ:
case OP_REGIMM_BGEZAL:
return (s32)reg_cache[op.r.rs] >= 0;
}
default:
break;
}
return false;
}
static u32 int_delay_slot(struct interpreter *inter, u32 pc, bool branch)
{
struct lightrec_state *state = inter->state;
u32 *reg_cache = state->regs.gpr;
struct opcode new_op, *op = next_op(inter);
union code op_next;
struct interpreter inter2 = {
.state = state,
.cycles = inter->cycles,
.delay_slot = true,
.load_delay = true,
};
bool run_first_op = false, dummy_ld = false, save_rs = false,
load_in_ds, branch_in_ds = false, branch_at_addr = false,
branch_taken;
u32 new_rt, old_rs = 0, new_rs = 0;
u32 next_pc, ds_next_pc, epc;
if (op->i.op == OP_CP0 && op->r.rs == OP_CP0_RFE) {
/* When an IRQ happens, the PSX exception handlers (when done)
* will jump back to the instruction that was executed right
* before the IRQ, unless it was a GTE opcode; in that case, it
* jumps to the instruction right after.
* Since we will never handle the IRQ right after a GTE opcode,
* but on branch boundaries, we need to adjust the return
* address so that the GTE opcode is effectively executed.
*/
epc = state->regs.cp0[14];
if (epc == pc - 4) {
op_next = lightrec_read_opcode(state, epc);
if (op_next.i.op == OP_CP2)
pc -= 4;
}
}
if (inter->delay_slot) {
/* The branch opcode was in a delay slot of another branch
* opcode. Just return the target address of the second
* branch. */
return pc;
}
/* An opcode located in the delay slot performing a delayed read
* requires special handling; we will always resort to using the
* interpreter in that case.
* Same goes for when we have a branch in a delay slot of another
* branch. */
load_in_ds = opcode_has_load_delay(op->c);
branch_in_ds = has_delay_slot(op->c);
if (branch) {
if (load_in_ds || branch_in_ds)
op_next = lightrec_read_opcode(state, pc);
if (load_in_ds) {
/* Verify that the next block actually reads the
* destination register of the delay slot opcode. */
run_first_op = opcode_reads_register(op_next, op->r.rt);
}
if (branch_in_ds) {
run_first_op = true;
next_pc = pc + 4;
}
if (load_in_ds && run_first_op) {
next_pc = pc + 4;
/* If the first opcode of the next block writes the
* regiser used as the address for the load, we need to
* reset to the old value after it has been executed,
* then restore the new value after the delay slot
* opcode has been executed. */
save_rs = opcode_reads_register(op->c, op->r.rs) &&
opcode_writes_register(op_next, op->r.rs);
if (save_rs)
old_rs = reg_cache[op->r.rs];
/* If both the first opcode of the next block and the
* delay slot opcode write to the same register, the
* value written by the delay slot opcode is
* discarded. */
dummy_ld = opcode_writes_register(op_next, op->r.rt);
}
if (!run_first_op) {
next_pc = pc;
} else if (has_delay_slot(op_next)) {
/* The first opcode of the next block is a branch, so we
* cannot execute it here, because of the load delay.
* Just check whether or not the branch would be taken,
* and save that info into the interpreter struct. */
branch_at_addr = true;
branch_taken = is_branch_taken(reg_cache, op_next);
pr_debug("Target of impossible branch is a branch, "
"%staken.\n", branch_taken ? "" : "not ");
inter->cycles += lightrec_cycles_of_opcode(inter->state, op_next);
old_rs = reg_cache[op_next.r.rs];
} else {
new_op.c = op_next;
new_op.flags = 0;
inter2.op = &new_op;
inter2.offset = 0;
/* Execute the first opcode of the next block */
lightrec_int_op(&inter2);
if (save_rs) {
new_rs = reg_cache[op->r.rs];
reg_cache[op->r.rs] = old_rs;
}
inter->cycles += lightrec_cycles_of_opcode(inter->state, op_next);
}
} else {
next_pc = int_get_ds_pc(inter, 2);
}
inter2.block = inter->block;
inter2.op = op;
inter2.cycles = inter->cycles;
inter2.offset = inter->offset + 1;
if (dummy_ld)
new_rt = reg_cache[op->r.rt];
/* Execute delay slot opcode */
ds_next_pc = lightrec_int_op(&inter2);
if (branch_at_addr) {
if (op_next.i.op == OP_SPECIAL)
/* TODO: Handle JALR setting $ra */
ds_next_pc = old_rs;
else if (op_next.i.op == OP_J || op_next.i.op == OP_JAL)
/* TODO: Handle JAL setting $ra */
ds_next_pc = (pc & 0xf0000000) | (op_next.j.imm << 2);
else
ds_next_pc = pc + 4 + ((s16)op_next.i.imm << 2);
}
if (branch_at_addr && !branch_taken) {
/* If the branch at the target of the branch opcode is not
* taken, we jump to its delay slot */
next_pc = pc + sizeof(u32);
} else if (branch_at_addr || (!branch && branch_in_ds)) {
next_pc = ds_next_pc;
}
if (save_rs)
reg_cache[op->r.rs] = new_rs;
if (dummy_ld)
reg_cache[op->r.rt] = new_rt;
inter->cycles += lightrec_cycles_of_opcode(inter->state, op->c);
if (branch_at_addr && branch_taken) {
/* If the branch at the target of the branch opcode is taken,
* we execute its delay slot here, and jump to its target
* address. */
op_next = lightrec_read_opcode(state, pc + 4);
new_op.c = op_next;
new_op.flags = 0;
inter2.op = &new_op;
inter2.block = NULL;
inter->cycles += lightrec_cycles_of_opcode(inter->state, op_next);
pr_debug("Running delay slot of branch at target of impossible "
"branch\n");
lightrec_int_op(&inter2);
}
return next_pc;
}
static u32 int_unimplemented(struct interpreter *inter)
{
lightrec_set_exit_flags(inter->state, LIGHTREC_EXIT_UNKNOWN_OP);
return inter->block->pc + (inter->offset << 2);
}
static u32 int_jump(struct interpreter *inter, bool link)
{
struct lightrec_state *state = inter->state;
u32 old_pc = int_get_branch_pc(inter);
u32 pc = (old_pc & 0xf0000000) | (inter->op->j.imm << 2);
if (link)
state->regs.gpr[31] = old_pc + 8;
if (op_flag_no_ds(inter->op->flags))
return pc;
return int_delay_slot(inter, pc, true);
}
static u32 int_J(struct interpreter *inter)
{
return int_jump(inter, false);
}
static u32 int_JAL(struct interpreter *inter)
{
return int_jump(inter, true);
}
static u32 int_jumpr(struct interpreter *inter, u8 link_reg)
{
struct lightrec_state *state = inter->state;
u32 old_pc = int_get_branch_pc(inter);
u32 next_pc = state->regs.gpr[inter->op->r.rs];
if (link_reg)
state->regs.gpr[link_reg] = old_pc + 8;
if (op_flag_no_ds(inter->op->flags))
return next_pc;
return int_delay_slot(inter, next_pc, true);
}
static u32 int_special_JR(struct interpreter *inter)
{
return int_jumpr(inter, 0);
}
static u32 int_special_JALR(struct interpreter *inter)
{
return int_jumpr(inter, inter->op->r.rd);
}
static u32 int_do_branch(struct interpreter *inter, u32 old_pc, u32 next_pc)
{
if (!inter->delay_slot && op_flag_local_branch(inter->op->flags) &&
(s16)inter->op->c.i.imm >= 0) {
next_pc = old_pc + ((1 + (s16)inter->op->c.i.imm) << 2);
next_pc = lightrec_emulate_block(inter->state, inter->block, next_pc);
}
return next_pc;
}
static u32 int_branch(struct interpreter *inter, u32 pc,
union code code, bool branch)
{
u32 next_pc = pc + 4 + ((s16)code.i.imm << 2);
update_cycles_before_branch(inter);
if (op_flag_no_ds(inter->op->flags)) {
if (branch)
return int_do_branch(inter, pc, next_pc);
else
return jump_next(inter);
}
if (!inter->delay_slot)
next_pc = int_delay_slot(inter, next_pc, branch);
if (branch)
return int_do_branch(inter, pc, next_pc);
if (op_flag_emulate_branch(inter->op->flags))
return pc + 8;
else
return jump_after_branch(inter);
}
static u32 int_beq(struct interpreter *inter, bool bne)
{
u32 rs, rt, old_pc = int_get_branch_pc(inter);
rs = inter->state->regs.gpr[inter->op->i.rs];
rt = inter->state->regs.gpr[inter->op->i.rt];
return int_branch(inter, old_pc, inter->op->c, (rs == rt) ^ bne);
}
static u32 int_BEQ(struct interpreter *inter)
{
return int_beq(inter, false);
}
static u32 int_BNE(struct interpreter *inter)
{
return int_beq(inter, true);
}
static u32 int_bgez(struct interpreter *inter, bool link, bool lt, bool regimm)
{
u32 old_pc = int_get_branch_pc(inter);
s32 rs;
if (link)
inter->state->regs.gpr[31] = old_pc + 8;
rs = (s32)inter->state->regs.gpr[inter->op->i.rs];
return int_branch(inter, old_pc, inter->op->c,
((regimm && !rs) || rs > 0) ^ lt);
}
static u32 int_regimm_BLTZ(struct interpreter *inter)
{
return int_bgez(inter, false, true, true);
}
static u32 int_regimm_BGEZ(struct interpreter *inter)
{
return int_bgez(inter, false, false, true);
}
static u32 int_regimm_BLTZAL(struct interpreter *inter)
{
return int_bgez(inter, true, true, true);
}
static u32 int_regimm_BGEZAL(struct interpreter *inter)
{
return int_bgez(inter, true, false, true);
}
static u32 int_BLEZ(struct interpreter *inter)
{
return int_bgez(inter, false, true, false);
}
static u32 int_BGTZ(struct interpreter *inter)
{
return int_bgez(inter, false, false, false);
}
static u32 int_cfc(struct interpreter *inter)
{
struct lightrec_state *state = inter->state;
const struct opcode *op = inter->op;
u32 val;
val = lightrec_mfc(state, op->c);
if (likely(op->r.rt))
state->regs.gpr[op->r.rt] = val;
return jump_next(inter);
}
static u32 int_ctc(struct interpreter *inter)
{
struct lightrec_state *state = inter->state;
const struct opcode *op = inter->op;
lightrec_mtc(state, op->c, op->r.rd, state->regs.gpr[op->r.rt]);
/* If we have a MTC0 or CTC0 to CP0 register 12 (Status) or 13 (Cause),
* return early so that the emulator will be able to check software
* interrupt status. */
if (!op_flag_no_ds(inter->op->flags) &&
op->i.op == OP_CP0 && (op->r.rd == 12 || op->r.rd == 13))
return int_get_ds_pc(inter, 1);
else
return jump_next(inter);
}
static u32 int_cp0_RFE(struct interpreter *inter)
{
lightrec_rfe(inter->state);
return jump_next(inter);
}
static u32 int_CP(struct interpreter *inter)
{
lightrec_cp(inter->state, inter->op->c);
return jump_next(inter);
}
static u32 int_ADDI(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_i *op = &inter->op->i;
if (likely(op->rt))
reg_cache[op->rt] = reg_cache[op->rs] + (s32)(s16)op->imm;
return jump_next(inter);
}
static u32 int_SLTI(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_i *op = &inter->op->i;
if (likely(op->rt))
reg_cache[op->rt] = (s32)reg_cache[op->rs] < (s32)(s16)op->imm;
return jump_next(inter);
}
static u32 int_SLTIU(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_i *op = &inter->op->i;
if (likely(op->rt))
reg_cache[op->rt] = reg_cache[op->rs] < (u32)(s32)(s16)op->imm;
return jump_next(inter);
}
static u32 int_ANDI(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_i *op = &inter->op->i;
if (likely(op->rt))
reg_cache[op->rt] = reg_cache[op->rs] & op->imm;
return jump_next(inter);
}
static u32 int_ORI(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_i *op = &inter->op->i;
if (likely(op->rt))
reg_cache[op->rt] = reg_cache[op->rs] | op->imm;
return jump_next(inter);
}
static u32 int_XORI(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_i *op = &inter->op->i;
if (likely(op->rt))
reg_cache[op->rt] = reg_cache[op->rs] ^ op->imm;
return jump_next(inter);
}
static u32 int_LUI(struct interpreter *inter)
{
struct opcode_i *op = &inter->op->i;
inter->state->regs.gpr[op->rt] = op->imm << 16;
return jump_next(inter);
}
static u32 int_io(struct interpreter *inter, bool is_load)
{
struct opcode_i *op = &inter->op->i;
u32 *reg_cache = inter->state->regs.gpr;
u32 val, *flags = NULL;
if (!inter->load_delay && inter->block)
flags = &inter->op->flags;
val = lightrec_rw(inter->state, inter->op->c,
reg_cache[op->rs], reg_cache[op->rt],
flags, inter->block, inter->offset);
if (is_load && op->rt)
reg_cache[op->rt] = val;
return jump_next(inter);
}
static u32 int_load(struct interpreter *inter)
{
return int_io(inter, true);
}
static u32 int_store(struct interpreter *inter)
{
u32 next_pc;
if (likely(!op_flag_smc(inter->op->flags)))
return int_io(inter, false);
lightrec_rw(inter->state, inter->op->c,
inter->state->regs.gpr[inter->op->i.rs],
inter->state->regs.gpr[inter->op->i.rt],
&inter->op->flags, inter->block, inter->offset);
next_pc = int_get_ds_pc(inter, 1);
/* Invalidate next PC, to force the rest of the block to be rebuilt */
lightrec_invalidate(inter->state, next_pc, 4);
return next_pc;
}
static u32 int_LWC2(struct interpreter *inter)
{
return int_io(inter, false);
}
static u32 int_special_SLL(struct interpreter *inter)
{
struct opcode *op = inter->op;
u32 rt;
if (op->opcode) { /* Handle NOPs */
rt = inter->state->regs.gpr[op->r.rt];
inter->state->regs.gpr[op->r.rd] = rt << op->r.imm;
}
return jump_next(inter);
}
static u32 int_special_SRL(struct interpreter *inter)
{
struct opcode *op = inter->op;
u32 rt = inter->state->regs.gpr[op->r.rt];
inter->state->regs.gpr[op->r.rd] = rt >> op->r.imm;
return jump_next(inter);
}
static u32 int_special_SRA(struct interpreter *inter)
{
struct opcode *op = inter->op;
s32 rt = inter->state->regs.gpr[op->r.rt];
inter->state->regs.gpr[op->r.rd] = rt >> op->r.imm;
return jump_next(inter);
}
static u32 int_special_SLLV(struct interpreter *inter)
{
struct opcode *op = inter->op;
u32 rs = inter->state->regs.gpr[op->r.rs];
u32 rt = inter->state->regs.gpr[op->r.rt];
inter->state->regs.gpr[op->r.rd] = rt << (rs & 0x1f);
return jump_next(inter);
}
static u32 int_special_SRLV(struct interpreter *inter)
{
struct opcode *op = inter->op;
u32 rs = inter->state->regs.gpr[op->r.rs];
u32 rt = inter->state->regs.gpr[op->r.rt];
inter->state->regs.gpr[op->r.rd] = rt >> (rs & 0x1f);
return jump_next(inter);
}
static u32 int_special_SRAV(struct interpreter *inter)
{
struct opcode *op = inter->op;
u32 rs = inter->state->regs.gpr[op->r.rs];
s32 rt = inter->state->regs.gpr[op->r.rt];
inter->state->regs.gpr[op->r.rd] = rt >> (rs & 0x1f);
return jump_next(inter);
}
static u32 int_syscall_break(struct interpreter *inter)
{
if (inter->op->r.op == OP_SPECIAL_BREAK)
lightrec_set_exit_flags(inter->state, LIGHTREC_EXIT_BREAK);
else
lightrec_set_exit_flags(inter->state, LIGHTREC_EXIT_SYSCALL);
return int_get_ds_pc(inter, 0);
}
static u32 int_special_MFHI(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_r *op = &inter->op->r;
if (likely(op->rd))
reg_cache[op->rd] = reg_cache[REG_HI];
return jump_next(inter);
}
static u32 int_special_MTHI(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
reg_cache[REG_HI] = reg_cache[inter->op->r.rs];
return jump_next(inter);
}
static u32 int_special_MFLO(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_r *op = &inter->op->r;
if (likely(op->rd))
reg_cache[op->rd] = reg_cache[REG_LO];
return jump_next(inter);
}
static u32 int_special_MTLO(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
reg_cache[REG_LO] = reg_cache[inter->op->r.rs];
return jump_next(inter);
}
static u32 int_special_MULT(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
s32 rs = reg_cache[inter->op->r.rs];
s32 rt = reg_cache[inter->op->r.rt];
u8 reg_lo = get_mult_div_lo(inter->op->c);
u8 reg_hi = get_mult_div_hi(inter->op->c);
u64 res = (s64)rs * (s64)rt;
if (!op_flag_no_hi(inter->op->flags))
reg_cache[reg_hi] = res >> 32;
if (!op_flag_no_lo(inter->op->flags))
reg_cache[reg_lo] = res;
return jump_next(inter);
}
static u32 int_special_MULTU(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
u32 rs = reg_cache[inter->op->r.rs];
u32 rt = reg_cache[inter->op->r.rt];
u8 reg_lo = get_mult_div_lo(inter->op->c);
u8 reg_hi = get_mult_div_hi(inter->op->c);
u64 res = (u64)rs * (u64)rt;
if (!op_flag_no_hi(inter->op->flags))
reg_cache[reg_hi] = res >> 32;
if (!op_flag_no_lo(inter->op->flags))
reg_cache[reg_lo] = res;
return jump_next(inter);
}
static u32 int_special_DIV(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
s32 rs = reg_cache[inter->op->r.rs];
s32 rt = reg_cache[inter->op->r.rt];
u8 reg_lo = get_mult_div_lo(inter->op->c);
u8 reg_hi = get_mult_div_hi(inter->op->c);
u32 lo, hi;
if (rt == 0) {
hi = rs;
lo = (rs < 0) * 2 - 1;
} else {
lo = rs / rt;
hi = rs % rt;
}
if (!op_flag_no_hi(inter->op->flags))
reg_cache[reg_hi] = hi;
if (!op_flag_no_lo(inter->op->flags))
reg_cache[reg_lo] = lo;
return jump_next(inter);
}
static u32 int_special_DIVU(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
u32 rs = reg_cache[inter->op->r.rs];
u32 rt = reg_cache[inter->op->r.rt];
u8 reg_lo = get_mult_div_lo(inter->op->c);
u8 reg_hi = get_mult_div_hi(inter->op->c);
u32 lo, hi;
if (rt == 0) {
hi = rs;
lo = (u32)-1;
} else {
lo = rs / rt;
hi = rs % rt;
}
if (!op_flag_no_hi(inter->op->flags))
reg_cache[reg_hi] = hi;
if (!op_flag_no_lo(inter->op->flags))
reg_cache[reg_lo] = lo;
return jump_next(inter);
}
static u32 int_special_ADD(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_r *op = &inter->op->r;
s32 rs = reg_cache[op->rs];
s32 rt = reg_cache[op->rt];
if (likely(op->rd))
reg_cache[op->rd] = rs + rt;
return jump_next(inter);
}
static u32 int_special_SUB(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_r *op = &inter->op->r;
u32 rs = reg_cache[op->rs];
u32 rt = reg_cache[op->rt];
if (likely(op->rd))
reg_cache[op->rd] = rs - rt;
return jump_next(inter);
}
static u32 int_special_AND(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_r *op = &inter->op->r;
u32 rs = reg_cache[op->rs];
u32 rt = reg_cache[op->rt];
if (likely(op->rd))
reg_cache[op->rd] = rs & rt;
return jump_next(inter);
}
static u32 int_special_OR(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_r *op = &inter->op->r;
u32 rs = reg_cache[op->rs];
u32 rt = reg_cache[op->rt];
if (likely(op->rd))
reg_cache[op->rd] = rs | rt;
return jump_next(inter);
}
static u32 int_special_XOR(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_r *op = &inter->op->r;
u32 rs = reg_cache[op->rs];
u32 rt = reg_cache[op->rt];
if (likely(op->rd))
reg_cache[op->rd] = rs ^ rt;
return jump_next(inter);
}
static u32 int_special_NOR(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_r *op = &inter->op->r;
u32 rs = reg_cache[op->rs];
u32 rt = reg_cache[op->rt];
if (likely(op->rd))
reg_cache[op->rd] = ~(rs | rt);
return jump_next(inter);
}
static u32 int_special_SLT(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_r *op = &inter->op->r;
s32 rs = reg_cache[op->rs];
s32 rt = reg_cache[op->rt];
if (likely(op->rd))
reg_cache[op->rd] = rs < rt;
return jump_next(inter);
}
static u32 int_special_SLTU(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_r *op = &inter->op->r;
u32 rs = reg_cache[op->rs];
u32 rt = reg_cache[op->rt];
if (likely(op->rd))
reg_cache[op->rd] = rs < rt;
return jump_next(inter);
}
static u32 int_META_MOV(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_m *op = &inter->op->m;
if (likely(op->rd))
reg_cache[op->rd] = reg_cache[op->rs];
return jump_next(inter);
}
static u32 int_META_EXTC(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_m *op = &inter->op->m;
if (likely(op->rd))
reg_cache[op->rd] = (u32)(s32)(s8)reg_cache[op->rs];
return jump_next(inter);
}
static u32 int_META_EXTS(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
struct opcode_m *op = &inter->op->m;
if (likely(op->rd))
reg_cache[op->rd] = (u32)(s32)(s16)reg_cache[op->rs];
return jump_next(inter);
}
static u32 int_META_MULT2(struct interpreter *inter)
{
u32 *reg_cache = inter->state->regs.gpr;
union code c = inter->op->c;
u32 rs = reg_cache[c.r.rs];
u8 reg_lo = get_mult_div_lo(c);
u8 reg_hi = get_mult_div_hi(c);
if (!op_flag_no_lo(inter->op->flags)) {
if (c.r.op < 32)
reg_cache[reg_lo] = rs << c.r.op;
else
reg_cache[reg_lo] = 0;
}