-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathmodel.py
62 lines (44 loc) · 1.77 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Importing Libraries
import tensorflow as tf
from tensorflow.keras.layers import Input, Reshape, Dropout, Dense ,Flatten
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import LeakyReLU,ReLU
from tensorflow.keras.layers import Conv2DTranspose,Conv2D
from tensorflow.keras.models import Sequential, Model, load_model
import numpy as np
# Model of Generator
def make_generator(noise_dim):
model=Sequential()
model.add(Dense(7*7*256,input_shape=(noise_dim)))
model.add(BatchNormalization(momentum=0.5))
model.add(ReLU())
model.add(Reshape((7,7,256)))
model.add(Conv2DTranspose(128,(3,3),strides=(1,1),padding='same',use_bias='False'))
model.add(BatchNormalization(momentum=0.5))
model.add(ReLU())
model.add(Conv2DTranspose(64,(3,3),strides=(2,2),padding='same',use_bias='False'))
model.add(BatchNormalization(momentum=0.5))
model.add(ReLU())
model.add(Conv2DTranspose(1,(3,3),strides=(2,2),padding='same',use_bias='False',activation='tanh'))
return model
# Model of discriminator
def make_discriminator():
model=Sequential()
model.add(Conv2D(64,(3,3),strides=(2,2),padding='same',input_shape=[28,28,1]))
model.add(LeakyReLU(alpha= 0.2))
model.add(Dropout(0.3))
model.add(Conv2D(128,(3,3),strides=(2,2),padding='same'))
model.add(BatchNormalization(momentum=0.5))
model.add(LeakyReLU(alpha= 0.2))
model.add(Dropout(0.3))
model.add(Conv2D(256,(3,3),strides=(2,2),padding='same'))
model.add(BatchNormalization(momentum=0.5))
model.add(LeakyReLU(alpha= 0.2))
model.add(Dropout(0.3))
model.add(Conv2D(512,(3,3),strides=(2,2),padding='same'))
model.add(BatchNormalization(momentum=0.5))
model.add(LeakyReLU(alpha= 0.2))
model.add(Dropout(0.3))
model.add(Flatten())
model.add(Dense(1))
return model