forked from jdh-algo/JoyVASA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
73 lines (60 loc) · 2.22 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# coding: utf-8
import os
import os.path as osp
import tyro
import subprocess
import platform
from src.config.argument_config import ArgumentConfig
from src.config.inference_config import InferenceConfig
from src.config.crop_config import CropConfig
if platform.system() == "Windows":
import pathlib
temp = pathlib.PosixPath
pathlib.PosixPath = pathlib.WindowsPath
def partial_fields(target_class, kwargs):
return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
def fast_check_ffmpeg():
try:
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
return True
except:
return False
def fast_check_args(args: ArgumentConfig):
if not osp.exists(args.reference):
raise FileNotFoundError(f"reference info not found: {args.reference}")
if not osp.exists(args.audio):
raise FileNotFoundError(f"audio info not found: {args.audio}")
def main():
# set tyro theme
tyro.extras.set_accent_color("bright_cyan")
args = tyro.cli(ArgumentConfig)
ffmpeg_dir = os.path.join(os.getcwd(), "ffmpeg")
if osp.exists(ffmpeg_dir):
os.environ["PATH"] += (os.pathsep + ffmpeg_dir)
if not fast_check_ffmpeg():
raise ImportError(
"FFmpeg is not installed. Please install FFmpeg (including ffmpeg and ffprobe) before running this script. https://ffmpeg.org/download.html"
)
fast_check_args(args)
# specify configs for inference
inference_cfg = partial_fields(InferenceConfig, args.__dict__)
crop_cfg = partial_fields(CropConfig, args.__dict__)
# init pipeline
if args.animation_mode == "animal":
from src.live_portrait_wmg_pipeline_animal import LivePortraitPipelineAnimal
pipeline = LivePortraitPipelineAnimal(
inference_cfg=inference_cfg,
crop_cfg=crop_cfg
)
elif args.animation_mode == "human":
from src.live_portrait_wmg_pipeline import LivePortraitPipeline
pipeline = LivePortraitPipeline(
inference_cfg=inference_cfg,
crop_cfg=crop_cfg
)
else:
raise RuntimeError(f"error args.mode: {args.mode}")
# run
pipeline.execute(args)
if __name__ == "__main__":
main()