forked from facebookresearch/audiocraft
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmagnet_app.py
351 lines (299 loc) · 14.4 KB
/
magnet_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under thmage license found in the
# LICENSE file in the root directory of this source tree.
import argparse
from concurrent.futures import ProcessPoolExecutor
import logging
import os
from pathlib import Path
import subprocess as sp
import sys
from tempfile import NamedTemporaryFile
import time
import typing as tp
import warnings
import gradio as gr
from audiocraft.data.audio import audio_write
from audiocraft.models import MAGNeT
MODEL = None # Last used model
SPACE_ID = os.environ.get('SPACE_ID', '')
MAX_BATCH_SIZE = 12
N_REPEATS = 2
INTERRUPTING = False
MBD = None
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
_old_call = sp.call
PROD_STRIDE_1 = "prod-stride1 (new!)"
def _call_nostderr(*args, **kwargs):
# Avoid ffmpeg vomiting on the logs.
kwargs['stderr'] = sp.DEVNULL
kwargs['stdout'] = sp.DEVNULL
_old_call(*args, **kwargs)
sp.call = _call_nostderr
# Preallocating the pool of processes.
pool = ProcessPoolExecutor(4)
pool.__enter__()
def interrupt():
global INTERRUPTING
INTERRUPTING = True
class FileCleaner:
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = []
def add(self, path: tp.Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
path.unlink()
self.files.pop(0)
else:
break
file_cleaner = FileCleaner()
def make_waveform(*args, **kwargs):
# Further remove some warnings.
be = time.time()
with warnings.catch_warnings():
warnings.simplefilter('ignore')
out = gr.make_waveform(*args, **kwargs)
print("Make a video took", time.time() - be)
return out
def load_model(version='facebook/magnet-small-10secs'):
global MODEL
print("Loading model", version)
if MODEL is None or MODEL.name != version:
MODEL = None # in case loading would crash
MODEL = MAGNeT.get_pretrained(version)
def _do_predictions(texts, progress=False, gradio_progress=None, **gen_kwargs):
MODEL.set_generation_params(**gen_kwargs)
print("new batch", len(texts), texts)
be = time.time()
try:
outputs = MODEL.generate(texts, progress=progress, return_tokens=False)
except RuntimeError as e:
raise gr.Error("Error while generating " + e.args[0])
outputs = outputs.detach().cpu().float()
pending_videos = []
out_wavs = []
for i, output in enumerate(outputs):
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(
file.name, output, MODEL.sample_rate, strategy="loudness",
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
if i == 0:
pending_videos.append(pool.submit(make_waveform, file.name))
out_wavs.append(file.name)
file_cleaner.add(file.name)
out_videos = [pending_video.result() for pending_video in pending_videos]
for video in out_videos:
file_cleaner.add(video)
print("batch finished", len(texts), time.time() - be)
print("Tempfiles currently stored: ", len(file_cleaner.files))
return out_videos, out_wavs
def predict_batched(texts, melodies):
max_text_length = 512
texts = [text[:max_text_length] for text in texts]
load_model('facebook/magnet-small-10secs')
res = _do_predictions(texts, melodies)
return res
def predict_full(model, model_path, text, temperature, topp,
max_cfg_coef, min_cfg_coef,
decoding_steps1, decoding_steps2, decoding_steps3, decoding_steps4,
span_score,
progress=gr.Progress()):
global INTERRUPTING
INTERRUPTING = False
progress(0, desc="Loading model...")
model_path = model_path.strip()
if model_path:
if not Path(model_path).exists():
raise gr.Error(f"Model path {model_path} doesn't exist.")
if not Path(model_path).is_dir():
raise gr.Error(f"Model path {model_path} must be a folder containing "
"state_dict.bin and compression_state_dict_.bin.")
model = model_path
if temperature < 0:
raise gr.Error("Temperature must be >= 0.")
load_model(model)
max_generated = 0
def _progress(generated, to_generate):
nonlocal max_generated
max_generated = max(generated, max_generated)
progress((min(max_generated, to_generate), to_generate))
if INTERRUPTING:
raise gr.Error("Interrupted.")
MODEL.set_custom_progress_callback(_progress)
videos, wavs = _do_predictions(
[text] * N_REPEATS, progress=True,
temperature=temperature, top_p=topp,
max_cfg_coef=max_cfg_coef, min_cfg_coef=min_cfg_coef,
decoding_steps=[decoding_steps1, decoding_steps2, decoding_steps3, decoding_steps4],
span_arrangement='stride1' if (span_score == PROD_STRIDE_1) else 'nonoverlap',
gradio_progress=progress)
outputs_ = [videos[0]] + [wav for wav in wavs]
return tuple(outputs_)
def ui_full(launch_kwargs):
with gr.Blocks() as interface:
gr.Markdown(
"""
# MAGNeT
This is your private demo for [MAGNeT](https://github.com/facebookresearch/audiocraft),
A fast text-to-music model, consists of a single, non-autoregressive transformer.
presented at: ["Masked Audio Generation using a Single Non-Autoregressive Transformer"] (https://huggingface.co/papers/2401.04577)
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Input Text", value="80s electronic track with melodic synthesizers, catchy beat and groovy bass", interactive=True)
with gr.Row():
submit = gr.Button("Submit")
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
with gr.Row():
model = gr.Radio(['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs',
'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs',
'facebook/audio-magnet-small', 'facebook/audio-magnet-medium'],
label="Model", value='facebook/magnet-small-10secs', interactive=True)
model_path = gr.Text(label="Model Path (custom models)")
with gr.Row():
span_score = gr.Radio(["max-nonoverlap", PROD_STRIDE_1],
label="Span Scoring", value=PROD_STRIDE_1, interactive=True)
with gr.Row():
decoding_steps1 = gr.Number(label="Decoding Steps (stage 1)", value=20, interactive=True)
decoding_steps2 = gr.Number(label="Decoding Steps (stage 2)", value=10, interactive=True)
decoding_steps3 = gr.Number(label="Decoding Steps (stage 3)", value=10, interactive=True)
decoding_steps4 = gr.Number(label="Decoding Steps (stage 4)", value=10, interactive=True)
with gr.Row():
temperature = gr.Number(label="Temperature", value=3.0, step=0.25, minimum=0, interactive=True)
topp = gr.Number(label="Top-p", value=0.9, step=0.1, minimum=0, maximum=1, interactive=True)
max_cfg_coef = gr.Number(label="Max CFG coefficient", value=10.0, minimum=0, interactive=True)
min_cfg_coef = gr.Number(label="Min CFG coefficient", value=1.0, minimum=0, interactive=True)
with gr.Column():
output = gr.Video(label="Generated Audio - variation 1")
audio_outputs = [gr.Audio(label=f"Generated Audio - variation {i+1}", type='filepath') for i in range(N_REPEATS)]
submit.click(fn=predict_full,
inputs=[model, model_path, text,
temperature, topp,
max_cfg_coef, min_cfg_coef,
decoding_steps1, decoding_steps2, decoding_steps3, decoding_steps4,
span_score],
outputs=[output] + [o for o in audio_outputs])
gr.Examples(
fn=predict_full,
examples=[
[
"80s electronic track with melodic synthesizers, catchy beat and groovy bass",
'facebook/magnet-small-10secs',
20, 3.0, 0.9, 10.0,
],
[
"80s electronic track with melodic synthesizers, catchy beat and groovy bass. 170 bpm",
'facebook/magnet-small-10secs',
20, 3.0, 0.9, 10.0,
],
[
"Earthy tones, environmentally conscious, ukulele-infused, harmonic, breezy, easygoing, organic instrumentation, gentle grooves",
'facebook/magnet-medium-10secs',
20, 3.0, 0.9, 10.0,
],
[ "Funky groove with electric piano playing blue chords rhythmically",
'facebook/magnet-medium-10secs',
20, 3.0, 0.9, 10.0,
],
[
"Rock with saturated guitars, a heavy bass line and crazy drum break and fills.",
'facebook/magnet-small-30secs',
60, 3.0, 0.9, 10.0,
],
[ "A grand orchestral arrangement with thunderous percussion, epic brass fanfares, and soaring strings, creating a cinematic atmosphere fit for a heroic battle",
'facebook/magnet-medium-30secs',
60, 3.0, 0.9, 10.0,
],
[ "Seagulls squawking as ocean waves crash while wind blows heavily into a microphone.",
'facebook/audio-magnet-small',
20, 3.5, 0.8, 20.0,
],
[ "A toilet flushing as music is playing and a man is singing in the distance.",
'facebook/audio-magnet-medium',
20, 3.5, 0.8, 20.0,
],
],
inputs=[text, model, decoding_steps1, temperature, topp, max_cfg_coef],
outputs=[output]
)
gr.Markdown(
"""
### More details
#### Music Generation
"magnet" models will generate a short music extract based on the textual description you provided.
These models can generate either 10 seconds or 30 seconds of music.
These models were trained with descriptions from a stock music catalog. Descriptions that will work best
should include some level of details on the instruments present, along with some intended use case
(e.g. adding "perfect for a commercial" can somehow help).
We present 4 model variants:
1. facebook/magnet-small-10secs - a 300M non-autoregressive transformer capable of generating 10-second music conditioned
on text.
2. facebook/magnet-medium-10secs - 1.5B parameters, 10 seconds audio.
3. facebook/magnet-small-30secs - 300M parameters, 30 seconds audio.
4. facebook/magnet-medium-30secs - 1.5B parameters, 30 seconds audio.
#### Sound-Effect Generation
"audio-magnet" models will generate a 10-second sound effect based on the description you provide.
These models were trained on the following data sources: a subset of AudioSet (Gemmeke et al., 2017),
[BBC sound effects](https://sound-effects.bbcrewind.co.uk/), AudioCaps (Kim et al., 2019),
Clotho v2 (Drossos et al., 2020), VGG-Sound (Chen et al., 2020), FSD50K (Fonseca et al., 2021),
[Free To Use Sounds](https://www.freetousesounds.com/all-in-one-bundle/), [Sonniss Game Effects](https://sonniss.com/gameaudiogdc),
[WeSoundEffects](https://wesoundeffects.com/we-sound-effects-bundle-2020/),
[Paramount Motion - Odeon Cinematic Sound Effects](https://www.paramountmotion.com/odeon-sound-effects).
We present 2 model variants:
1. facebook/audio-magnet-small - 10 second sound effect generation, 300M parameters.
2. facebook/audio-magnet-medium - 10 second sound effect generation, 1.5B parameters.
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MAGNET.md)
for more details.
"""
)
interface.queue().launch(**launch_kwargs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--listen',
type=str,
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
help='IP to listen on for connections to Gradio',
)
parser.add_argument(
'--username', type=str, default='', help='Username for authentication'
)
parser.add_argument(
'--password', type=str, default='', help='Password for authentication'
)
parser.add_argument(
'--server_port',
type=int,
default=0,
help='Port to run the server listener on',
)
parser.add_argument(
'--inbrowser', action='store_true', help='Open in browser'
)
parser.add_argument(
'--share', action='store_true', help='Share the gradio UI'
)
args = parser.parse_args()
launch_kwargs = {}
launch_kwargs['server_name'] = args.listen
if args.username and args.password:
launch_kwargs['auth'] = (args.username, args.password)
if args.server_port:
launch_kwargs['server_port'] = args.server_port
if args.inbrowser:
launch_kwargs['inbrowser'] = args.inbrowser
if args.share:
launch_kwargs['share'] = args.share
logging.basicConfig(level=logging.INFO, stream=sys.stderr)
# Show the interface
ui_full(launch_kwargs)