forked from Standard-Intelligence/hertz-dev
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
382 lines (309 loc) · 11.9 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
from typing import Optional, Tuple, MutableMapping
from typing import Union
import math
from contextlib import nullcontext
import torch
import torch as T
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.nn.attention import SDPBackend
from einops import rearrange
from utils import si_module, default, exists, load_ckpt
CACHE_FILL_VALUE = -1
def get_cache_len(cache: Optional[Tensor]) -> int:
"""
cache: (batch, seq_len, 2, kv_heads, head_dim)
"""
if cache is None:
return 0
nonzeros = T.any(cache.flatten(2) != CACHE_FILL_VALUE, dim=-1)
length = nonzeros.sum(dim=-1).int()
assert T.all(length == length[0])
return length[0]
def rotate_half(x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(x, cos, sin, offset: int = 0):
assert (
cos.shape[1] >= offset + x.shape[1]
), f"Offset and/or input sequence is too large,\
\n offset: {offset}, seq_len: {x.shape[1]}, max: {cos.shape[1]}"
cos_out = cos[:, offset : offset + x.shape[1], :, :]
sin_out = sin[:, offset : offset + x.shape[1], :, :]
return (x * cos_out) + (rotate_half(x) * sin_out)
# Adapted from https://github.com/foundation-model-stack/foundation-model-stack
class ShapeRotator:
def __init__(
self,
dim: int,
end: int,
theta: float = 10_000,
):
super().__init__()
self.dim = dim
self.ratio = theta
self.cached_freqs: MutableMapping[int, MutableMapping[int, torch.Tensor]] = {}
self.max_seq_len_cached: MutableMapping[int, int] = {}
self.ntk_scaling = False
self.max_seq_len = end
def compute_freqs_cis(self, device, max_seq_len=None):
alpha = 1
dev_idx = device.index
max_seq_len = default(max_seq_len, self.max_seq_len)
if dev_idx not in self.cached_freqs:
self.cached_freqs[dev_idx] = {}
if dev_idx not in self.max_seq_len_cached:
self.max_seq_len_cached[dev_idx] = 0
if self.max_seq_len_cached[dev_idx] > 0:
return 1
max_seq_len = max(max_seq_len, self.max_seq_len)
if (
1 in self.cached_freqs[dev_idx]
and max_seq_len <= self.max_seq_len_cached[dev_idx]
):
return 1
ratio = self.ratio
dim = self.dim
freqs = 1.0 / (ratio ** (torch.arange(0, dim, 2, device=device).float() / dim))
t = torch.arange(max_seq_len, device=device, dtype=freqs.dtype)
freqs = torch.einsum("i,j->ij", t, freqs)
emb = torch.cat((freqs, freqs), dim=-1).to(device)
cos_to_cache = emb.cos()[None, :, None, :]
sin_to_cache = emb.sin()[None, :, None, :]
self.max_seq_len_cached[dev_idx] = max_seq_len
self.cached_freqs[dev_idx][alpha] = torch.stack(
[
cos_to_cache,
sin_to_cache,
],
dim=-1,
)
return alpha
def rotate(
self,
q: Tensor,
k: Tensor,
offset: int = 0,
) -> Tuple[Tensor, Tensor]:
"""
Args
----
q : torch.Tensor
Embedded query tensor, expected size is B x S x H x Eh
k : torch.Tensor
Embedded query tensor, expected size is B x S x H x Eh
"""
assert len(q.size()) == 4
assert len(k.size()) == 4
seq_len = self.max_seq_len
alpha = self.compute_freqs_cis(q.device, seq_len)
freqs = self.cached_freqs[q.device.index][alpha]
freqs = freqs.float() # 1 L D/2 2 2
q_out = apply_rotary_pos_emb(q, freqs[..., 0], freqs[..., 1], offset=offset).type_as(q)
k_out = apply_rotary_pos_emb(k, freqs[..., 0], freqs[..., 1], offset=offset).type_as(k)
return q_out.view_as(q), k_out.view_as(k)
class Linear(nn.Linear):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs, bias=False)
class Norm(nn.Module):
def __init__(self,
dim: int,
eps: float = 1e-5,) -> None:
super().__init__()
self.eps = eps
self.weight = nn.Parameter(T.ones((dim,)))
def forward(self, input: Tensor) -> Tensor:
return F.layer_norm(input, (self.weight.shape[0],), weight=self.weight, bias=None, eps=self.eps)
class FFNN(nn.Module):
def __init__(self,
dim: int,
expand_dim: int = None,):
super().__init__()
expand_dim = default(expand_dim, 256 * ((int(2 * 4 * dim / 3) + 256 - 1) // 256))
self.dim = dim
self.expand_dim = expand_dim
self.gateup_proj = Linear(dim, 2*expand_dim)
self.down_proj = Linear(expand_dim, dim)
def forward(self, x):
gate, up = self.gateup_proj(x).chunk(2, dim=-1)
return self.down_proj(up * F.silu(gate))
class GQA(nn.Module):
def __init__(self,
dim: int,
n_head: int,
shape_rotator: ShapeRotator,
kv_heads: Optional[int] = None,
eps: float = 1e-5,
causal: bool = True,):
super().__init__()
self.n_heads = n_head
self.kv_heads = default(kv_heads, n_head)
self.head_dim = dim // n_head
self.causal = causal
self.proj_qkv = Linear(dim, self.head_dim*(n_head+2*self.kv_heads))
self.norm_q = Norm(self.head_dim*n_head, eps=eps)
self.norm_k = Norm(self.head_dim*self.kv_heads, eps=eps)
self.attn_out = Linear(dim, dim)
self.shape_rotator = shape_rotator
def _sdpa(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
k = k.repeat_interleave(self.n_heads // self.kv_heads, dim=2)
v = v.repeat_interleave(self.n_heads // self.kv_heads, dim=2)
with nn.attention.sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION) if k.device.type == 'cuda' else nullcontext():
x = F.scaled_dot_product_attention(
q.transpose(1, 2),
k.transpose(1, 2),
v.transpose(1, 2),
is_causal=False if (q.size(1) != k.size(1)) else self.causal,
)
x = x.transpose(1, 2).contiguous()
return x
def _attend(self, q: Tensor, k: Tensor, v: Tensor, kv_cache: Optional[Tensor] = None,):
cache_len = get_cache_len(kv_cache)
q, k = self.shape_rotator.rotate(q, k, offset=cache_len)
if exists(kv_cache):
k = T.cat([kv_cache[:, :cache_len, 0], k], dim=1)
v = T.cat([kv_cache[:, :cache_len, 1], v], dim=1)
kv_cache[:, :k.size(1), 0] = k
kv_cache[:, :v.size(1), 1] = v
x = self._sdpa(q, k, v)
return self.attn_out(rearrange(x, 'b s h d -> b s (h d)'))
def _project(self, x):
full_q, full_k, full_v = self.proj_qkv(x).chunk(3, dim=-1)
normed_full_q = self.norm_q(full_q).to(full_q.dtype)
normed_full_k = self.norm_k(full_k).to(full_k.dtype)
q = rearrange(normed_full_q, 'b s (h d) -> b s h d', h=self.n_heads)
k = rearrange(normed_full_k, 'b s (h d) -> b s h d', h=self.kv_heads)
v = rearrange(full_v, 'b s (h d) -> b s h d', h=self.kv_heads)
return q, k, v
def forward(self,
x: Tensor,
kv: Optional[Tensor] = None,):
"""
x: (B, S, D)
kv: (B, S, H, D)
"""
q, k, v = self._project(x)
return self._attend(q, k, v, kv_cache=kv)
class PreNormAttn(nn.Module):
def __init__(self,
dim: int,
n_head: int,
shape_rotator: ShapeRotator,
kv_heads: Optional[int] = None,
eps: float = 1e-5,
causal: bool = True,):
super().__init__()
self.attn_norm = Norm(dim, eps=eps)
self.attn = GQA(dim, n_head, shape_rotator, kv_heads, eps=eps, causal=causal)
def forward(self, x: Tensor, kv: Optional[Tensor] = None) -> Tensor:
"""
x: (B, S, D)
kv: (B, S, H, D)
"""
return x + self.attn(self.attn_norm(x), kv)
class PreNormFFNN(nn.Module):
def __init__(self,
dim: int,
ff_dim: int,
eps: float = 1e-5,):
super().__init__()
self.ffnn_norm = Norm(dim, eps=eps)
self.ffnn = FFNN(dim, ff_dim)
def forward(self, x: Tensor) -> Tensor:
return x + self.ffnn(self.ffnn_norm(x))
class Block(nn.Module):
def __init__(self,
dim: int,
layer_id: int = 0,
n_head: int = 16,
kv_heads: Optional[int] = None,
ff_dim: Optional[int] = None,
eps: float = 1e-5,
causal: bool = True,
shape_rotator: ShapeRotator = None):
super().__init__()
self.attn = PreNormAttn(dim, n_head, shape_rotator, kv_heads, eps=eps, causal=causal)
self.ffnn = PreNormFFNN(dim, ff_dim, eps=eps)
self.dim = dim
self.layer_id = layer_id
self.head_dim = dim // n_head
self.expand_dim = self.ffnn.ffnn.expand_dim
self.reset_parameters()
def reset_parameters(self):
std = 1.0 / math.sqrt(self.dim)
nn.init.trunc_normal_(self.ffnn.ffnn.gateup_proj.weight, std=std, a=-3 * std, b=3 * std)
nn.init.trunc_normal_(self.attn.attn.proj_qkv.weight, std=std, a=-3 * std, b=3 * std)
nn.init.trunc_normal_(self.attn.attn.attn_out.weight, std=std, a=-3 * std, b=3 * std)
xstd = 1.0 / math.sqrt(self.expand_dim)
nn.init.trunc_normal_(self.ffnn.ffnn.down_proj.weight, std=xstd, a=-3 * xstd, b=3 * xstd)
def forward(self, x: Tensor, kv: Optional[Tensor] = None) -> Tensor:
"""
x: (B, S, D)
kv: (B, S, H, D)
"""
h = self.attn(x, kv)
out = self.ffnn(h)
return out
class GPTOutput(nn.Module):
def __init__(self, dim, vocab_size):
super().__init__()
self.dim = dim
self.norm = Norm(dim)
self.output = Linear(dim, vocab_size)
self.reset_parameters()
def reset_parameters(self):
std = 1.0 / math.sqrt(self.dim**2)
nn.init.trunc_normal_(self.output.weight, std=std, a=-3 * std, b=3 * std)
def forward(self, x):
return self.output(self.norm(x))
@si_module
class Stack(nn.Module):
class Config:
layers: int
dim: int
seq_len: int
n_head: int = 32
ff_dim: int = None
kv_heads: int = None
eps: float = 1e-5
theta: Union[int, float] = 10_000
causal: bool = True
from_pretrained: Optional[Tuple[str, int]] = None
def __init__(self, c: Config):
super().__init__()
from_pretrained = c.from_pretrained
if exists(from_pretrained):
checkpoint = load_ckpt(c.from_pretrained)
self.shape_rotator = ShapeRotator(c.dim//c.n_head, c.seq_len, theta=c.theta)
self.layers = nn.ModuleList([
Block(
dim=c.dim,
layer_id=l,
n_head=c.n_head,
kv_heads=c.kv_heads,
ff_dim=c.ff_dim,
eps=c.eps,
causal=c.causal,
shape_rotator=self.shape_rotator,
) for l in range(c.layers)
])
kv_heads = c.kv_heads or c.n_head
head_dim = c.dim // c.n_head
cache_shape = [c.layers, c.seq_len, 2, kv_heads, head_dim]
self.cache_shape = cache_shape
self.cache = [None] * c.layers
if exists(from_pretrained):
self.load_state_dict(checkpoint)
def init_cache(self, bsize, device, dtype, length:int=None):
if self.cache_shape is None:
return
cache_shape = self.cache_shape.copy()
cache_shape[1] = length or cache_shape[1]
self.cache = T.full((bsize, *cache_shape), CACHE_FILL_VALUE, device=device, dtype=dtype).transpose(0, 1)
def deinit_cache(self):
self.cache = [None] * len(self.cache)
def forward(self, x: Tensor) -> Tensor:
for l, layer in enumerate(self.layers):
x = layer(x, kv=self.cache[l])
return x