diff --git a/nbs/01_putils.ipynb b/nbs/01_putils.ipynb index d0dddbad..6cd777fe 100644 --- a/nbs/01_putils.ipynb +++ b/nbs/01_putils.ipynb @@ -937,7 +937,7 @@ "#| export\n", "def get_abs_tol(key):\n", " # dic = {'evolve': 0.01, 'ARC-evolve' : 0.01, 'ARC-display': 0.01, 'ARC': 0.01}\n", - " dic = { 'ARC-evolve' : 0.01, 'ARC-display': 0.1, 'ARC-change' : 0.01, 'ARC-zero': 0.01, 'ARC-gradient': 0.005}\n", + " dic = { 'ARC-evolve' : 0.01, 'ARC-display': 0.1, 'ARC-change' : 0.01, 'ARC-zero': 0.01, 'ARC-gradient': 0.0001}\n", "\n", " # if key in dic:\n", " return dic[key]\n", diff --git a/nbs/04_hierarchy.ipynb b/nbs/04_hierarchy.ipynb index bfc0f6e4..8a1013e4 100644 --- a/nbs/04_hierarchy.ipynb +++ b/nbs/04_hierarchy.ipynb @@ -2789,10 +2789,6 @@ "display_name": "python3", "language": "python", "name": "python3" - }, - "language_info": { - "name": "python", - "version": "3.9.11" } }, "nbformat": 4, diff --git a/nbs/05_environments.ipynb b/nbs/05_environments.ipynb index 963ced53..00df2f76 100644 --- a/nbs/05_environments.ipynb +++ b/nbs/05_environments.ipynb @@ -1660,16 +1660,20 @@ " self.done = self.env_done\n", " else:\n", " self.done, details = ListChecker.check_list_unchanged(self.boxcar, rel_tol =get_rel_tol('ARC-change'), abs_tol=get_abs_tol('ARC-change'), gradient_abs_tol=get_abs_tol('ARC-gradient'))\n", + " if self.done:\n", + " self.env.add_to_gradient_list(details['gradient_range']) \n", " # self.env.fitness_isclose_to_zero = ListChecker.check_float_list_close_to_zero(self.boxcar, rel_tol = 0, abs_tol=get_abs_tol('ARC-zero'), gradient_abs_tol=get_abs_tol('ARC-gradient'))\n", "\n", " if self.done:\n", " self.env.add_to_fitness_list(max(self.boxcar) )\n", - " self.env.fitness_isclose_to_zero, _, _ = self.is_fitness_close_to_zero()\n", + " self.env.fitness_isclose_to_zero = self.is_fitness_close_to_zero()\n", + "\n", + " # if self.env.fitness_isclose_to_zero:\n", + " # print(self.env.iteration)\n", + " # print('gradient ', abs(max(gradients) - min(gradients)), max(abs(gradients)), gradient_mean, [ f'{g:4.4f}' for g in gradients] )\n", + " # print('fitness, ', self.boxcar)\n", + " # print('flist', self.env.fitness_list)\n", "\n", - " # if self.boxcar[0]<0.01 and self.boxcar[9]<0.01:\n", - " # print('fitness_isclose_to_zero', self.env.fitness_isclose_to_zero)\n", - " # print(self.boxcar)\n", - " # print('---> ', gradient_mean, gradients)\n", "\n", " if self.debug:\n", " if self.done:\n", @@ -1682,7 +1686,7 @@ "\n", " def is_fitness_close_to_zero(self):\n", " # should this be max of fitness list\n", - " return ListChecker.check_float_list_close_to_zero(self.boxcar, rel_tol = 0, abs_tol=get_abs_tol('ARC-zero'), gradient_abs_tol=get_abs_tol('ARC-gradient'))\n", + " return ListChecker.check_float_list_close_to_zero(self.boxcar, rel_tol = 0, abs_tol=get_abs_tol('ARC-zero'))\n", "\n", "\n", " def get_fitness_list(self):\n", @@ -1716,7 +1720,7 @@ " else:\n", " fit = self.env.fitness\n", "\n", - " return {'fitness_list' : self.env.fitness_list, 'fitness' : fit}\n", + " return {'fitness_list' : self.env.fitness_list, 'fitness' : fit, 'gradient_list' : self.env.gradient_list}\n", "\n", " class Factory:\n", " @staticmethod\n", @@ -1739,11 +1743,17 @@ "output_type": "stream", "text": [ "{'num_actions': 1, 'grid_shape': 'equal', 'dims': 1}\n", + "gradient -285.0 [ 0. 0. 0. -475. -950.] 950.0\n", "ARC ARC | [4] | links constant \n", + "gradient -195.4 [ 0. 0. -475. -484. -18.] 484.0\n", "ARC ARC | [5] | links constant \n", + "gradient -197.8 [ 0. -475. -484. -16. -14.] 484.0\n", "ARC ARC | [6] | links constant \n", + "gradient -294.4 [-950. -484. -16. -12. -10.] 950.0\n", "ARC ARC | [7] | links constant \n", + "gradient -12.0 [-18. -16. -12. -8. -6.] 18.0\n", "ARC ARC | [8] | links constant \n", + "gradient -8.0 [-14. -12. -8. -4. -2.] 14.0\n", "ARC ARC | [9] | links constant \n", "{'type': 'ARC', 'name': 'ARC', 'value': [9], 'links': {0: 'constant'}, 'env_name': 'ARC'}\n", "\n", @@ -2034,10 +2044,6 @@ "display_name": "python3", "language": "python", "name": "python3" - }, - "language_info": { - "name": "python", - "version": "3.9.11" } }, "nbformat": 4, diff --git a/nbs/07_errors.ipynb b/nbs/07_errors.ipynb index f67ea025..da021fb6 100644 --- a/nbs/07_errors.ipynb +++ b/nbs/07_errors.ipynb @@ -897,10 +897,6 @@ "display_name": "python3", "language": "python", "name": "python3" - }, - "language_info": { - "name": "python", - "version": "3.9.11" } }, "nbformat": 4, diff --git a/nbs/14_helpers.ipynb b/nbs/14_helpers.ipynb index 2ed09aac..dc4b6d65 100644 --- a/nbs/14_helpers.ipynb +++ b/nbs/14_helpers.ipynb @@ -76,9 +76,6 @@ " if not float_list:\n", " return True, {\"gradient\": None, \"mean\": None, \"std_dev\": None}\n", "\n", - " gradient = np.gradient(float_list)\n", - " mean_value = np.mean(float_list)\n", - " std_dev = np.std(float_list)\n", " first_value = float_list[0]\n", "\n", "\n", @@ -87,13 +84,17 @@ " for value in float_list[1:]\n", " )\n", "\n", - " sum_abs_gradient_close_to_zero = math.isclose(sum(abs(gradient)), 0, rel_tol=0, abs_tol=gradient_abs_tol)\n", + " gradients = np.gradient(float_list)\n", + " mean_value = np.mean(float_list)\n", + " std_dev = np.std(float_list)\n", "\n", + " gradient_range = abs(max(gradients) - min(gradients)) \n", + " gradient_range_close_to_zero = math.isclose(gradient_range, 0, rel_tol=0, abs_tol=gradient_abs_tol)\n", "\n", - " return all_close_to_first and sum_abs_gradient_close_to_zero, {\"gradient\": gradient, \"mean\": mean_value, \"std_dev\": std_dev}\n", + " return all_close_to_first and gradient_range_close_to_zero, {\"gradient_range\": gradient_range, \"mean\": mean_value, \"std_dev\": std_dev}\n", "\n", " @staticmethod\n", - " def check_float_list_close_to_zero(float_list, rel_tol=1e-9, abs_tol=0.0, gradient_abs_tol=0.0):\n", + " def check_float_list_close_to_zero(float_list, rel_tol=1e-9, abs_tol=0.0):\n", " \"\"\"\n", " Checks if the values in the float list are close to zero within the specified tolerance\n", " and if the gradient (difference between consecutive values) is close to zero within the specified gradient tolerance.\n", @@ -108,22 +109,8 @@ " math.isclose(value, 0, rel_tol=rel_tol, abs_tol=abs_tol)\n", " for value in float_list\n", " )\n", - " \n", - " # mean_value = np.mean(float_list)\n", - " # mean_close_to_zero = math.isclose(mean_value, 0, rel_tol=rel_tol, abs_tol=abs_tol)\n", - " \n", - " if len(float_list) == 1:\n", - " return values_close_to_zero\n", - " \n", - " gradients = np.gradient(float_list)\n", - " gradient_mean = np.mean(gradients)\n", - " \n", - " # gradients_close_to_mean = all(\n", - " # math.isclose(gradient, gradient_mean, rel_tol=0, abs_tol=gradient_abs_tol)\n", - " # for gradient in gradients\n", - " # )\n", - " \n", - " return values_close_to_zero, gradient_mean, gradients\n", + " \n", + " return values_close_to_zero\n", " \n", "\n", "\n", diff --git a/nbs/15_arc.ipynb b/nbs/15_arc.ipynb index 8593e4d3..f12ecd46 100644 --- a/nbs/15_arc.ipynb +++ b/nbs/15_arc.ipynb @@ -633,7 +633,7 @@ " self.dataset = None\n", " self.namespace = namespace\n", " self.fitness_list = []\n", - "\n", + " self.gradient_list = []\n", " # Render settings\n", " self.screen_width = 1000\n", " self.screen_height = 500\n", @@ -700,6 +700,7 @@ " self.iteration = 1 # Reset iteration\n", " self.num_actions = self.info['num_actions'] # Set num_actions\n", " self.fitness_list = [] # Initialize an empty list for fitness\n", + " self.gradient_list = [] # Initialize an empty list for gradient\n", " self.fitness_isclose_to_zero = False\n", "\n", " def next(self):\n", @@ -725,6 +726,13 @@ " \"\"\"\n", " self.fitness_list.append(fitness)\n", "\n", + " def add_to_gradient_list(self, gradient): \n", + " \"\"\"\n", + " Add the provided gradient to the gradient list.\n", + " \"\"\"\n", + " self.gradient_list.append(gradient) \n", + "\n", + "\n", " def is_environment_resolved(self):\n", " max_fitness = max(self.fitness_list)\n", " return max_fitness < 0.01\n", @@ -1015,10 +1023,6 @@ "display_name": "python3", "language": "python", "name": "python3" - }, - "language_info": { - "name": "python", - "version": "3.9.11" } }, "nbformat": 4, diff --git a/nbs/16_environment_processing.ipynb b/nbs/16_environment_processing.ipynb index e464bfc6..a8840143 100644 --- a/nbs/16_environment_processing.ipynb +++ b/nbs/16_environment_processing.ipynb @@ -15,7 +15,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -50,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -77,7 +77,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -252,7 +252,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -282,7 +282,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -390,7 +390,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -461,7 +461,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -491,7 +491,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -554,10 +554,14 @@ " render=self.args['verbosed']['display_env'], runs=runs, experiment=experiment, min=min, plots=plots, plots_dir=self.args['plots_dir'],\n", " enhanced_environment_properties=enhanced_environment_properties, title_prefix=title_prefix, early_termination=False)\n", "\n", - " score = round(score ** 0.5)\n", + " score = round(score ** 0.5, 1)\n", " print('Test score',score)\n", " fitness_list = str( [f'{i:4.3f}' for i in self.env_processing_details['fitness_list']])\n", " print('fitness_list', fitness_list)\n", + "\n", + " gradient_list = str( [f'{i:4.5f}' for i in self.env_processing_details['gradient_list']])\n", + " print('gradient_list', gradient_list)\n", + "\n", " ram = round(get_ram_mb())\n", " print('RAM', ram)\n", " if experiment: \n", @@ -568,12 +572,14 @@ " indstr = str(environment_properties['index'])\n", " experiment.log_other('index', indstr)\n", " experiment.log_other('fitness_list', fitness_list)\n", + " experiment.log_other('gradient_list', gradient_list)\n", " input_set = environment_properties['input_set']\n", " experiment.log_other('input_set', str(input_set))\n", " experiment.log_metric('last_gen', self.env_processing_details['last_gen'])\n", " experiment.log_metric('fitness', self.env_processing_details['fitness'])\n", " experiment.log_metric('RAM', ram) \n", " experiment.log_other('test_score', f'{score:4.3f}')\n", + " experiment.log_other('code', environment_properties['code'])\n", "\n", " return {}\n", "\n", @@ -600,7 +606,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -624,38 +630,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "G:\\My Drive\\data\\ga\\ARC\\FitnessError-MovingSumError-Mode07\\ga-000.000-s001-1x1-m007-ARC0009-1e1867dd3cfb6967b085ac003458aa46.properties\n", - "{'code': '007bbfb7', 'index': 0, 'dataset': 'test', 'control_set': ['dims'], 'input_set': ['env'], 'history': 10, 'initial': 100}\n", - "Test score 572\n" - ] - }, - { - "data": { - "text/plain": [ - "{}" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "#| gui \n", - "env_proc.results(filepath='G:\\\\My Drive\\\\data\\\\ga\\\\ARC\\\\FitnessError-MovingSumError-Mode07\\\\ga-000.000-s001-1x1-m007-ARC0009-1e1867dd3cfb6967b085ac003458aa46.properties')\n", + "\n", + "#env_proc.results(filepath='G:\\\\My Drive\\\\data\\\\ga\\\\ARC\\\\FitnessError-MovingSumError-Mode07\\\\ga-000.000-s001-1x1-m007-ARC0009-1e1867dd3cfb6967b085ac003458aa46.properties')\n", "# env_proc.results(filepath='testfiles\\\\data\\\\ga\\\\ga-000.000-s001-1x1-m007-ARC0010-9ddcf52416e60d65f19007957d07262d-consolidated.properties')" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -676,6 +663,18 @@ "display_name": "python3", "language": "python", "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.11" } }, "nbformat": 4, diff --git a/pct/_modidx.py b/pct/_modidx.py index 8abab24c..700afc1a 100644 --- a/pct/_modidx.py +++ b/pct/_modidx.py @@ -42,6 +42,7 @@ 'pct.arc.ARCEnv': ('arc.html#arcenv', 'pct/arc.py'), 'pct.arc.ARCEnv.__init__': ('arc.html#arcenv.__init__', 'pct/arc.py'), 'pct.arc.ARCEnv.add_to_fitness_list': ('arc.html#arcenv.add_to_fitness_list', 'pct/arc.py'), + 'pct.arc.ARCEnv.add_to_gradient_list': ('arc.html#arcenv.add_to_gradient_list', 'pct/arc.py'), 'pct.arc.ARCEnv.call_fitness_function_arrays': ('arc.html#arcenv.call_fitness_function_arrays', 'pct/arc.py'), 'pct.arc.ARCEnv.close': ('arc.html#arcenv.close', 'pct/arc.py'), 'pct.arc.ARCEnv.fitness': ('arc.html#arcenv.fitness', 'pct/arc.py'), diff --git a/pct/arc.py b/pct/arc.py index 54219a48..be1a5ea7 100644 --- a/pct/arc.py +++ b/pct/arc.py @@ -375,7 +375,7 @@ def __init__(self, namespace=""): self.dataset = None self.namespace = namespace self.fitness_list = [] - + self.gradient_list = [] # Render settings self.screen_width = 1000 self.screen_height = 500 @@ -442,6 +442,7 @@ def reset(self): self.iteration = 1 # Reset iteration self.num_actions = self.info['num_actions'] # Set num_actions self.fitness_list = [] # Initialize an empty list for fitness + self.gradient_list = [] # Initialize an empty list for gradient self.fitness_isclose_to_zero = False def next(self): @@ -467,6 +468,13 @@ def add_to_fitness_list(self, fitness): """ self.fitness_list.append(fitness) + def add_to_gradient_list(self, gradient): + """ + Add the provided gradient to the gradient list. + """ + self.gradient_list.append(gradient) + + def is_environment_resolved(self): max_fitness = max(self.fitness_list) return max_fitness < 0.01 diff --git a/pct/environment_processing.py b/pct/environment_processing.py index 9499650b..86ecaa5f 100644 --- a/pct/environment_processing.py +++ b/pct/environment_processing.py @@ -425,10 +425,14 @@ def results(self, filepath=None, experiment=None): render=self.args['verbosed']['display_env'], runs=runs, experiment=experiment, min=min, plots=plots, plots_dir=self.args['plots_dir'], enhanced_environment_properties=enhanced_environment_properties, title_prefix=title_prefix, early_termination=False) - score = round(score ** 0.5) + score = round(score ** 0.5, 1) print('Test score',score) fitness_list = str( [f'{i:4.3f}' for i in self.env_processing_details['fitness_list']]) print('fitness_list', fitness_list) + + gradient_list = str( [f'{i:4.5f}' for i in self.env_processing_details['gradient_list']]) + print('gradient_list', gradient_list) + ram = round(get_ram_mb()) print('RAM', ram) if experiment: @@ -439,12 +443,14 @@ def results(self, filepath=None, experiment=None): indstr = str(environment_properties['index']) experiment.log_other('index', indstr) experiment.log_other('fitness_list', fitness_list) + experiment.log_other('gradient_list', gradient_list) input_set = environment_properties['input_set'] experiment.log_other('input_set', str(input_set)) experiment.log_metric('last_gen', self.env_processing_details['last_gen']) experiment.log_metric('fitness', self.env_processing_details['fitness']) experiment.log_metric('RAM', ram) experiment.log_other('test_score', f'{score:4.3f}') + experiment.log_other('code', environment_properties['code']) return {} diff --git a/pct/environments.py b/pct/environments.py index 1ca31be1..3ab522ac 100644 --- a/pct/environments.py +++ b/pct/environments.py @@ -1411,16 +1411,20 @@ def add_to_fitness_history(self, fitness): self.done = self.env_done else: self.done, details = ListChecker.check_list_unchanged(self.boxcar, rel_tol =get_rel_tol('ARC-change'), abs_tol=get_abs_tol('ARC-change'), gradient_abs_tol=get_abs_tol('ARC-gradient')) + if self.done: + self.env.add_to_gradient_list(details['gradient_range']) # self.env.fitness_isclose_to_zero = ListChecker.check_float_list_close_to_zero(self.boxcar, rel_tol = 0, abs_tol=get_abs_tol('ARC-zero'), gradient_abs_tol=get_abs_tol('ARC-gradient')) if self.done: self.env.add_to_fitness_list(max(self.boxcar) ) - self.env.fitness_isclose_to_zero, _, _ = self.is_fitness_close_to_zero() + self.env.fitness_isclose_to_zero = self.is_fitness_close_to_zero() + + # if self.env.fitness_isclose_to_zero: + # print(self.env.iteration) + # print('gradient ', abs(max(gradients) - min(gradients)), max(abs(gradients)), gradient_mean, [ f'{g:4.4f}' for g in gradients] ) + # print('fitness, ', self.boxcar) + # print('flist', self.env.fitness_list) - # if self.boxcar[0]<0.01 and self.boxcar[9]<0.01: - # print('fitness_isclose_to_zero', self.env.fitness_isclose_to_zero) - # print(self.boxcar) - # print('---> ', gradient_mean, gradients) if self.debug: if self.done: @@ -1433,7 +1437,7 @@ def add_to_fitness_history(self, fitness): def is_fitness_close_to_zero(self): # should this be max of fitness list - return ListChecker.check_float_list_close_to_zero(self.boxcar, rel_tol = 0, abs_tol=get_abs_tol('ARC-zero'), gradient_abs_tol=get_abs_tol('ARC-gradient')) + return ListChecker.check_float_list_close_to_zero(self.boxcar, rel_tol = 0, abs_tol=get_abs_tol('ARC-zero')) def get_fitness_list(self): @@ -1467,7 +1471,7 @@ def get_details(self): else: fit = self.env.fitness - return {'fitness_list' : self.env.fitness_list, 'fitness' : fit} + return {'fitness_list' : self.env.fitness_list, 'fitness' : fit, 'gradient_list' : self.env.gradient_list} class Factory: @staticmethod diff --git a/pct/helpers.py b/pct/helpers.py index 71925570..ccee2b86 100644 --- a/pct/helpers.py +++ b/pct/helpers.py @@ -29,9 +29,6 @@ def check_list_unchanged(float_list, rel_tol=1e-9, abs_tol=0.0, gradient_abs_tol if not float_list: return True, {"gradient": None, "mean": None, "std_dev": None} - gradient = np.gradient(float_list) - mean_value = np.mean(float_list) - std_dev = np.std(float_list) first_value = float_list[0] @@ -40,13 +37,17 @@ def check_list_unchanged(float_list, rel_tol=1e-9, abs_tol=0.0, gradient_abs_tol for value in float_list[1:] ) - sum_abs_gradient_close_to_zero = math.isclose(sum(abs(gradient)), 0, rel_tol=0, abs_tol=gradient_abs_tol) + gradients = np.gradient(float_list) + mean_value = np.mean(float_list) + std_dev = np.std(float_list) + gradient_range = abs(max(gradients) - min(gradients)) + gradient_range_close_to_zero = math.isclose(gradient_range, 0, rel_tol=0, abs_tol=gradient_abs_tol) - return all_close_to_first and sum_abs_gradient_close_to_zero, {"gradient": gradient, "mean": mean_value, "std_dev": std_dev} + return all_close_to_first and gradient_range_close_to_zero, {"gradient_range": gradient_range, "mean": mean_value, "std_dev": std_dev} @staticmethod - def check_float_list_close_to_zero(float_list, rel_tol=1e-9, abs_tol=0.0, gradient_abs_tol=0.0): + def check_float_list_close_to_zero(float_list, rel_tol=1e-9, abs_tol=0.0): """ Checks if the values in the float list are close to zero within the specified tolerance and if the gradient (difference between consecutive values) is close to zero within the specified gradient tolerance. @@ -61,22 +62,8 @@ def check_float_list_close_to_zero(float_list, rel_tol=1e-9, abs_tol=0.0, gradie math.isclose(value, 0, rel_tol=rel_tol, abs_tol=abs_tol) for value in float_list ) - - # mean_value = np.mean(float_list) - # mean_close_to_zero = math.isclose(mean_value, 0, rel_tol=rel_tol, abs_tol=abs_tol) - - if len(float_list) == 1: - return values_close_to_zero - - gradients = np.gradient(float_list) - gradient_mean = np.mean(gradients) - - # gradients_close_to_mean = all( - # math.isclose(gradient, gradient_mean, rel_tol=0, abs_tol=gradient_abs_tol) - # for gradient in gradients - # ) - - return values_close_to_zero, gradient_mean, gradients + + return values_close_to_zero diff --git a/pct/putils.py b/pct/putils.py index b9595050..5c5aed93 100644 --- a/pct/putils.py +++ b/pct/putils.py @@ -507,7 +507,7 @@ def clip_value(val, range): # %% ../nbs/01_putils.ipynb 50 def get_abs_tol(key): # dic = {'evolve': 0.01, 'ARC-evolve' : 0.01, 'ARC-display': 0.01, 'ARC': 0.01} - dic = { 'ARC-evolve' : 0.01, 'ARC-display': 0.1, 'ARC-change' : 0.01, 'ARC-zero': 0.01, 'ARC-gradient': 0.005} + dic = { 'ARC-evolve' : 0.01, 'ARC-display': 0.1, 'ARC-change' : 0.01, 'ARC-zero': 0.01, 'ARC-gradient': 0.0001} # if key in dic: return dic[key]