Skip to content

peterkuria1/agentic-langgraph-rag

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 

Repository files navigation

Local Agentic RAG wit Ollama, streamlit

I have a basic demo for using Llama 3.2 large language model using Retrieval Augument Generation, RAG to retrieve insights from documents embedded. I will be making use of Langgraph and Llama 3.1/3.2 LLM with Streamlit in building this multi-agentic chatbot.

Prerequisites

LLM - using Ollama to fetch the models

curl -fsSL https://ollama.com/install.sh | sh

Download the Llama LLM using Ollama

ollama run llama3.2:3b # 3b parameters

ollama run llama3.1 # 8B parameters

ollama run llama3.1:70b # 70b

(base) ➜ local-rag pyenv shell 3.11.9

create virtual env

(base) ➜ local-rag python3 -m venv .venv

activate virtual environment

(base) ➜ local-rag source .venv/bin/activate

win: \Scripts\activate

python3 -m pip install streamlit

streamlit run main.py

Open another terminal activate virtual env and lets develop

to run the app on docker

cd app/backend
docker compose up -d

to delete the containers

docker compose down

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published