I have a basic demo for using Llama 3.2 large language model using Retrieval Augument Generation, RAG to retrieve insights from documents embedded. I will be making use of Langgraph and Llama 3.1/3.2 LLM with Streamlit in building this multi-agentic chatbot.
curl -fsSL https://ollama.com/install.sh | sh
ollama run llama3.2:3b # 3b parameters
ollama run llama3.1 # 8B parameters
ollama run llama3.1:70b # 70b
(base) ➜ local-rag pyenv shell 3.11.9
(base) ➜ local-rag python3 -m venv .venv
(base) ➜ local-rag source .venv/bin/activate
python3 -m pip install streamlit
streamlit run main.py
cd app/backend
docker compose up -d
docker compose down