Ex_MatGL is a MatGL-based neural network potential that computes excited state energies and forces.
-
Install Pytorch. This package is tested on
- CUDA==11.7
- Python=3.9.17
- torch==2.0.0
python -m pip install torch==2.0.0+cu117 --index-url https://download.pytorch.org/whl/cu117
-
Install DGL.
python -m pip install dgl==1.0.1+cu117 -f https://data.dgl.ai/wheels/cu117/repo.html python -m pip install dglgo -f https://data.dgl.ai/wheels-test/repo.html
-
Install Matgl
Clone matgl repository and install latest version.1
git clone git@github.com:materialsvirtuallab/matgl.git python -m pip install ./matgl
-
Install this package
python -m pip install .
Sample code is here. Please read instructuion.
- C. Chen, S. P. Ong, A universal graph deep learning interatomic potential for the periodic table. Nature Computational Science. 2, 718–728 (2022).
- https://github.com/materialsvirtuallab/matgl
- Y. Shi, S. Zheng, G. Ke, Y. Shen, J. You, J. He, S. Luo, C. Liu, D. He, T.-Y. Liu, Benchmarking Graphormer on Large-Scale Molecular Modeling Datasets. arXiv [cs.LG] (2022).
- https://github.com/microsoft/Graphormer
Footnotes
-
If you install matgl 0.8.5 version via pip and try to run sample code using GPU, you see the following error.
TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
↩