-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
611 lines (474 loc) · 17.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
#______________________________________________________________________________
# Simple Data Structures: infinity, Dict, Struct
infinity = 1.0e400
import math
def Dict(**entries):
"""Create a dict out of the argument=value arguments.
>>> Dict(a=1, b=2, c=3)
{'a': 1, 'c': 3, 'b': 2}
"""
return entries
class DefaultDict(dict):
"""Dictionary with a default value for unknown keys."""
def __init__(self, default):
self.default = default
def __getitem__(self, key):
if key in self: return self.get(key)
return self.setdefault(key, copy.deepcopy(self.default))
def __copy__(self):
copy = DefaultDict(self.default)
copy.update(self)
return copy
class Struct:
"""Create an instance with argument=value slots.
This is for making a lightweight object whose class doesn't matter."""
def __init__(self, **entries):
self.__dict__.update(entries)
def __cmp__(self, other):
if isinstance(other, Struct):
return cmp(self.__dict__, other.__dict__)
else:
return cmp(self.__dict__, other)
def __repr__(self):
args = ['%s=%s' % (k, repr(v)) for (k, v) in list(vars(self).items())]
return 'Struct(%s)' % ', '.join(args)
def update(x, **entries):
"""Update a dict; or an object with slots; according to entries.
>>> update({'a': 1}, a=10, b=20)
{'a': 10, 'b': 20}
>>> update(Struct(a=1), a=10, b=20)
Struct(a=10, b=20)
"""
if isinstance(x, dict):
x.update(entries)
else:
x.__dict__.update(entries)
return x
#______________________________________________________________________________
# Functions on Sequences (mostly inspired by Common Lisp)
# NOTE: Sequence functions (count_if, find_if, every, some) take function
# argument first (like reduce, filter, and map).
def removeall(item, seq):
"""Return a copy of seq (or string) with all occurences of item removed.
>>> removeall(3, [1, 2, 3, 3, 2, 1, 3])
[1, 2, 2, 1]
>>> removeall(4, [1, 2, 3])
[1, 2, 3]
"""
if isinstance(seq, str):
return seq.replace(item, '')
else:
return [x for x in seq if x != item]
def unique(seq):
"""Remove duplicate elements from seq. Assumes hashable elements.
>>> unique([1, 2, 3, 2, 1])
[1, 2, 3]
"""
return list(set(seq))
def product(numbers):
"""Return the product of the numbers.
>>> product([1,2,3,4])
24
"""
return reduce(operator.mul, numbers, 1)
def count_if(predicate, seq):
"""Count the number of elements of seq for which the predicate is true.
>>> count_if(callable, [42, None, max, min])
2
"""
f = lambda count, x: count + (not not predicate(x))
return reduce(f, seq, 0)
def find_if(predicate, seq):
"""If there is an element of seq that satisfies predicate; return it.
>>> find_if(callable, [3, min, max])
<built-in function min>
>>> find_if(callable, [1, 2, 3])
"""
for x in seq:
if predicate(x): return x
return None
def every(predicate, seq):
"""True if every element of seq satisfies predicate.
>>> every(callable, [min, max])
1
>>> every(callable, [min, 3])
0
"""
for x in seq:
if not predicate(x): return False
return True
def some(predicate, seq):
"""If some element x of seq satisfies predicate(x), return predicate(x).
>>> some(callable, [min, 3])
1
>>> some(callable, [2, 3])
0
"""
for x in seq:
px = predicate(x)
if px: return px
return False
def isin(elt, seq):
"""Like (elt in seq), but compares with is, not ==.
>>> e = []; isin(e, [1, e, 3])
True
>>> isin(e, [1, [], 3])
False
"""
for x in seq:
if elt is x: return True
return False
#______________________________________________________________________________
# Functions on sequences of numbers
# NOTE: these take the sequence argument first, like min and max,
# and like standard math notation: \sigma (i = 1..n) fn(i)
# A lot of programing is finding the best value that satisfies some condition;
# so there are three versions of argmin/argmax, depending on what you want to
# do with ties: return the first one, return them all, or pick at random.
def argmin(seq, fn):
"""Return an element with lowest fn(seq[i]) score; tie goes to first one.
>>> argmin(['one', 'to', 'three'], len)
'to'
"""
best = seq[0];
best_score = fn(best)
for x in seq:
x_score = fn(x)
if x_score < best_score:
best, best_score = x, x_score
return best
def argmin_list(seq, fn):
"""Return a list of elements of seq[i] with the lowest fn(seq[i]) scores.
>>> argmin_list(['one', 'to', 'three', 'or'], len)
['to', 'or']
"""
best_score, best = fn(seq[0]), []
for x in seq:
x_score = fn(x)
if x_score < best_score:
best, best_score = [x], x_score
elif x_score == best_score:
best.append(x)
return best
def argmin_random_tie(seq, fn):
"""Return an element with lowest fn(seq[i]) score; break ties at random.
Thus, for all s,f: argmin_random_tie(s, f) in argmin_list(s, f)"""
best_score = fn(seq[0]);
n = 0
for x in seq:
x_score = fn(x)
if x_score < best_score:
best, best_score = x, x_score;
n = 1
elif x_score == best_score:
n += 1
if random.randrange(n) == 0:
best = x
return best
def argmax(seq, fn):
"""Return an element with highest fn(seq[i]) score; tie goes to first one.
>>> argmax(['one', 'to', 'three'], len)
'three'
"""
return argmin(seq, lambda x: -fn(x))
def argmax_list(seq, fn):
"""Return a list of elements of seq[i] with the highest fn(seq[i]) scores.
>>> argmax_list(['one', 'three', 'seven'], len)
['three', 'seven']
"""
return argmin_list(seq, lambda x: -fn(x))
def argmax_random_tie(seq, fn):
"Return an element with highest fn(seq[i]) score; break ties at random."
return argmin_random_tie(seq, lambda x: -fn(x))
#______________________________________________________________________________
# Statistical and mathematical functions
def histogram(values, mode=0, bin_function=None):
"""Return a list of (value, count) pairs, summarizing the input values.
Sorted by increasing value, or if mode=1, by decreasing count.
If bin_function is given, map it over values first."""
if bin_function: values = list(map(bin_function, values))
bins = {}
for val in values:
bins[val] = bins.get(val, 0) + 1
if mode:
return sorted(list(bins.items()), key=lambda v: v[1], reverse=True)
else:
return sorted(bins.items())
def log2(x):
"""Base 2 logarithm.
>>> log2(1024)
10.0
"""
return math.log10(x) / math.log10(2)
def mode(values):
"""Return the most common value in the list of values.
>>> mode([1, 2, 3, 2])
2
"""
return histogram(values, mode=1)[0][0]
def median(values):
"""Return the middle value, when the values are sorted.
If there are an odd number of elements, try to average the middle two.
If they can't be averaged (e.g. they are strings), choose one at random.
>>> median([10, 100, 11])
11
>>> median([1, 2, 3, 4])
2.5
"""
n = len(values)
values = sorted(values)
if n % 2 == 1:
return values[n / 2]
else:
middle2 = values[(n / 2) - 1:(n / 2) + 1]
try:
return mean(middle2)
except TypeError:
return random.choice(middle2)
def mean(values):
"""Return the arithmetic average of the values."""
return sum(values) / float(len(values))
def stddev(values, meanval=None):
"""The standard deviation of a set of values.
Pass in the mean if you already know it."""
if meanval == None: meanval = mean(values)
return math.sqrt(sum([(x - meanval) ** 2 for x in values]) / (len(values) - 1))
def dotproduct(X, Y):
"""Return the sum of the element-wise product of vectors x and y.
>>> dotproduct([1, 2, 3], [1000, 100, 10])
1230
"""
return sum([x * y for x, y in zip(X, Y)])
def vector_add(a, b):
"""Component-wise addition of two vectors.
>>> vector_add((0, 1), (8, 9))
(8, 10)
"""
return tuple(map(operator.add, a, b))
def probability(p):
"Return true with probability p."
return p > random.uniform(0.0, 1.0)
def num_or_str(x):
"""The argument is a string; convert to a number if possible, or strip it.
>>> num_or_str('42')
42
>>> num_or_str(' 42x ')
'42x'
"""
if isnumber(x): return x
try:
return int(x)
except ValueError:
try:
return float(x)
except ValueError:
return str(x).strip()
def normalize(numbers, total=1.0):
"""Multiply each number by a constant such that the sum is 1.0 (or total).
>>> normalize([1,2,1])
[0.25, 0.5, 0.25]
"""
k = total / sum(numbers)
return [k * n for n in numbers]
## OK, the following are not as widely useful utilities as some of the other
## functions here, but they do show up wherever we have 2D grids: Wumpus and
## Vacuum worlds, TicTacToe and Checkers, and markov decision Processes.
orientations = [(1, 0), (0, 1), (-1, 0), (0, -1)]
def turn_right(orientation):
return orientations[orientations.index(orientation) - 1]
def turn_left(orientation):
return orientations[(orientations.index(orientation) + 1) % len(orientations)]
def distance(xxx_todo_changeme, xxx_todo_changeme1):
"The distance between two (x, y) points."
(ax, ay) = xxx_todo_changeme
(bx, by) = xxx_todo_changeme1
return math.hypot((ax - bx), (ay - by))
def distance2(xxx_todo_changeme2, xxx_todo_changeme3):
"The square of the distance between two (x, y) points."
(ax, ay) = xxx_todo_changeme2
(bx, by) = xxx_todo_changeme3
return (ax - bx) ** 2 + (ay - by) ** 2
def clip(vector, lowest, highest):
"""Return vector, except if any element is less than the corresponding
value of lowest or more than the corresponding value of highest, clip to
those values.
>>> clip((-1, 10), (0, 0), (9, 9))
(0, 9)
"""
return type(vector)(list(map(min, list(map(max, vector, lowest)), highest)))
#______________________________________________________________________________
# Misc Functions
def printf(format, *args):
"""Format args with the first argument as format string, and write.
Return the last arg, or format itself if there are no args."""
sys.stdout.write(str(format) % args)
return if_(args, args[-1], format)
def caller(n=1):
"""Return the name of the calling function n levels up in the frame stack.
>>> caller(0)
'caller'
>>> def f():
... return caller()
>>> f()
'f'
"""
import inspect
return inspect.getouterframes(inspect.currentframe())[n][3]
def memoize(fn, slot=None):
"""Memoize fn: make it remember the computed value for any argument list.
If slot is specified, store result in that slot of first argument.
If slot is false, store results in a dictionary."""
if slot:
def memoized_fn(obj, *args):
if hasattr(obj, slot):
return getattr(obj, slot)
else:
val = fn(obj, *args)
setattr(obj, slot, val)
return val
else:
def memoized_fn(*args):
if args not in memoized_fn.cache:
memoized_fn.cache[args] = fn(*args)
return memoized_fn.cache[args]
memoized_fn.cache = {}
return memoized_fn
def if_(test, result, alternative):
"""Like C++ and Java's (test ? result : alternative), except
both result and alternative are always evaluated. However, if
either evaluates to a function, it is applied to the empty arglist,
so you can delay execution by putting it in a lambda.
>>> if_(2 + 2 == 4, 'ok', lambda: expensive_computation())
'ok'
"""
if test:
if callable(result): return result()
return result
else:
if callable(alternative): return alternative()
return alternative
def name(object):
"Try to find some reasonable name for the object."
return (getattr(object, 'name', 0) or getattr(object, '__name__', 0)
or getattr(getattr(object, '__class__', 0), '__name__', 0)
or str(object))
def isnumber(x):
"Is x a number? We say it is if it has a __int__ method."
return hasattr(x, '__int__')
def issequence(x):
"Is x a sequence? We say it is if it has a __getitem__ method."
return hasattr(x, '__getitem__')
def print_table(table, header=None, sep=' ', numfmt='%g'):
"""Print a list of lists as a table, so that columns line up nicely.
header, if specified, will be printed as the first row.
numfmt is the format for all numbers; you might want e.g. '%6.2f'.
(If you want different formats in differnt columns, don't use print_table.)
sep is the separator between columns."""
justs = [if_(isnumber(x), 'rjust', 'ljust') for x in table[0]]
if header:
table = [header] + table
table = [[if_(isnumber(x), lambda: numfmt % x, x) for x in row]
for row in table]
maxlen = lambda seq: max(list(map(len, seq)))
sizes = list(map(maxlen, list(zip(*[list(map(str, row)) for row in table]))))
for row in table:
for (j, size, x) in zip(justs, sizes, row):
print(getattr(str(x), j)(size), sep, end=' ')
print()
def AIMAFile(components, mode='r'):
"Open a file based at the AIMA root directory."
import utils
dir = os.path.dirname(utils.__file__)
return open(os.path.join(*[dir] + components), mode)
def DataFile(name, mode='r'):
"Return a file in the AIMA /data directory."
return AIMAFile(['..', 'data', name], mode)
#______________________________________________________________________________
# Queues: Stack, FIFOQueue
class Queue:
"""Queue is an abstract class/interface. There are three types:
Stack(): A Last In First Out Queue.
FIFOQueue(): A First In First Out Queue.
PriorityQueue(lt): Queue where items are sorted by lt, (default <).
Each type supports the following methods and functions:
q.append(item) -- add an item to the queue
q.extend(items) -- equivalent to: for item in items: q.append(item)
q.pop() -- return the top item from the queue
len(q) -- number of items in q (also q.__len())
Note that isinstance(Stack(), Queue) is false, because we implement stacks
as lists. If Python ever gets interfaces, Queue will be an interface."""
def __init__(self):
abstract
def extend(self, items):
for item in items:
self.append(item)
def Stack():
"""Return an empty list, suitable as a Last-In-First-Out Queue."""
return []
class FIFOQueue(Queue):
"""A First-In-First-Out Queue."""
def __init__(self):
self.A = []
self.start = 0
self.expanded = 0
def append(self, item):
self.A.append(item)
def __len__(self):
return len(self.A) - self.start
def extend(self, items):
self.A.extend(items)
self.expanded += 1
def pop(self):
self.A=sorted(self.A, key=lambda x: x.path_cost) #Pendiente de revisión
e = self.A[self.start]
self.start += 1
if self.start > 5 and self.start > len(self.A) / 2:
self.A = self.A[self.start:]
self.start = 0
return e
class PriorityQueue(Queue):
"""Returns a sorted list by cost_so_far"""
def __init__(self):
self.A = []
self.start = 0
self.expanded = 0
def append(self, item):
self.A.append(item)
def __len__(self):
return len(self.A) - self.start
def extend(self, items):
self.A.extend(items)
self.expanded += 1
self.A.sort(key=lambda node: node.path_cost)
def pop(self):
e = self.A[self.start]
self.start += 1
if self.start > 5 and self.start > len(self.A) / 2:
self.A = self.A[self.start:]
self.start = 0
return e
class PriorityQueueBabs(Queue):
"""Returns a sorted list by heuristic cost"""
def __init__(self, problem):
self.A = []
self.start = 0
self.problem = problem
self.expanded = 0
def append(self, item):
self.A.append(item)
def __len__(self):
return len(self.A) - self.start
def extend(self, items):
self.A.extend(items)
self.expanded += 1
self.A.sort(key=lambda node: node.path_cost + self.problem.h(node))
def pop(self):
e = self.A[self.start]
self.start += 1
if self.start > 5 and self.start > len(self.A) / 2:
self.A = self.A[self.start:]
self.start = 0
return e
## Fig: The idea is we can define things like Fig[3,10] later.
## Alas, it is Fig[3,10] not Fig[3.10], because that would be the same as Fig[3.1]
Fig = {}