Skip to content
This repository has been archived by the owner on Apr 7, 2023. It is now read-only.
/ normalization Public archive

Different strategies for normalizing a numeric collection that can be used by machine learning algorithms

License

Notifications You must be signed in to change notification settings

pharo-ai/normalization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Normalization Strategies for Machine Learning

Build status Coverage Status License

/!\ THIS PROJECT WAS MOVED TO BE PART OF https://github.com/pharo-ai/data-preprocessing /!
Do not depend on my anymore.

New way to load the code:

spec
  baseline: 'AIDataPreProcessing'
  with: [ spec
            repository: 'github://pharo-ai/data-preprocessing/src';
            loads: 'Normalizers' ].

Normalization is a technique often applied as part of data preparation for machine learning. The goal of normalization is to change the values of numeric columns in the dataset to use a common scale, without distorting differences in the ranges of values or losing information.

For example, consider that you have two collections, ages and salaries:

ages := #(25 19 30 32 41 50 24).
salaries := #(1600 1000 2500 2400 5000 3500 2500).

Those collections are on a very different scale. The differences in salaries have larger magnitude than differences in age. Which can confuse some machine learning algorithms and force them to "think" that if the difference salaries is 600 (euros) and the difference in age is 6 (years), then salary difference is 100 times greater than age difference. Such algorithms require data to be normalized - for example, both ages and salaries can be transformed to a scale of [0, 1].

There are different types of normalization. In this repository, we implement two most commonly used strategies: Min-Max Normalization and Standardization. You can easily define your own strategy by adding a subclass of AINormalizer.

Min-Max Normalization (a.k.a. Rescaling)

Min-Max or Rescaling is the type of normalization, every element of the numeric collection is transformed to a scale of [0, 1]:

x'[i] = (x[i] - x min) / (x max - x min)

Standardization

Standardization is the type of normalization, every element of the numeric collection is by scaled to be centered around the mean with a unit standard deviation:

x'[i] = (x[i] - x mean) / x std

How to install it?

To install normalization, go to the Playground (Ctrl+OW) in your Pharo image and execute the following Metacello script (select it and press Do-it button or Ctrl+D):

Metacello new
  baseline: 'AINormalization';
  repository: 'github://pharo-ai/normalization/src';
  load.

How to depend on it?

If you want to add a dependency on normalization to your project, include the following lines into your baseline method:

spec
  baseline: 'AINormalization'
  with: [ spec repository: 'github://pharo-ai/normalization/src' ].

If you are new to baselines and Metacello, check out the Baselines tutorial on Pharo Wiki.

How to use it?

You can normalize any numeric collection by calling the normalized method on it:

numbers := #(10 -3 4 2 -7 1000 0.1 -4.05).
numbers normalized. "#(0.0169 0.004 0.0109 0.0089 0.0 1.0 0.007 0.0029)"

By default, it will use the AIMinMaxNormalizer. If you want to use a different normalization strategy, you can call normalizedUsing: on a collection:

normalizer := AIStandardizationNormalizer new.
numbers normalizedUsing: normalizer. "#(-0.3261 -0.3628 -0.343 -0.3487 -0.3741 2.475 -0.3541 -0.3658)"

For the two normalization strategies that are defined in this package, we provide alias methods:

numbers rescaled.

"is the same as"
numbers normalizedUsing: AIMinMaxNormalizer new.
numbers standardized.

"is the same as"
numbers normalizedUsing: AIStandardizationNormalizer new.

Each normalizer remembers the parameters of the original collection (e.g., min/max or mean/std) and can use them to restore the normalized collection to its original state:

numbers := #(10 -3 4 2 -7 1000 0.1 -4.05).

normalizer := AIMinMaxNormalizer new.
normalizedNumbers := normalizer normalize: numbers. "#(0.0169 0.004 0.0109 0.0089 0.0 1.0 0.007 0.0029)"
restoredNumbers := normalizer restore: normalizedNumbers. "#(10 -3 4 2 -7 1000 0.1 -4.05)"

How to define new normalization strategies?

Normalization is implemented using a strategy design pattern. The AI-Normalization defines an abstract class AINormalizer which has two abstract methods AINormalizer class >> normalize: aCollection and AINormalizer class >> restore: aCollection. To define a normalization strategy, please implement a subclass of AINormalizer and provide your own definitions of normalize: and restore: methods. Keep in mind that those methods must not modify the given collection but return a new one.

To normalize a collection using your own strategy, call:

normalizer := YourCustomNormalizer new.
numbers normalizedUsing: normalizer.

About

Different strategies for normalizing a numeric collection that can be used by machine learning algorithms

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •