forked from animate1978/MB-Lab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transfor.py
157 lines (145 loc) · 6.08 KB
/
transfor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# MB-Lab
#
# MB-Lab fork website : https://github.com/animate1978/MB-Lab
#
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 3
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
#
# ManuelbastioniLAB - Copyright (C) 2015-2018 Manuel Bastioni
# Part made by Teto.
import logging
import bpy
# TODO pathlib might replace the current import os
# from pathlib import Path
import os
import time
import json
import operator
from . import algorithms
from . import file_ops
logger = logging.getLogger(__name__)
class Transfor:
def __init__(self, huma):
self.humanoid = huma
self.scn = None
def load_transformation_from_file(self, filepath):
self.humanoid.reset_character()
self.humanoid.transformations_data = file_ops.load_json_data(filepath, "Transformation file")
def set_scene(self, scene):
self.scn = scene
def save_transformation(self, filepath, category, minmax):
export_db = file_ops.load_json_data(filepath, "Create step or finalize transformation file.")
if export_db == None:
export_db = {}
#------------------ Variables for the method
obj = self.humanoid.get_object()
exists = False
#------------------ If the category doesn't exist, it's created.
if category not in export_db.keys():
export_db[category] = []
#------------------ Now, check every property, add to a temp list
temp_list = {}
calc = 0.0
for m_prop in self.humanoid.character_data.keys():
if not m_prop.startswith("Expressions"):
calc = (self.humanoid.character_data[m_prop] * 2) - 1
temp_list[m_prop] = round(calc, 3)
#------------------ Now, check final list and change values.
for key, value in temp_list.items():
exists = False
for t_prop in export_db[category]:
if key == t_prop[0]:
exists = True
if minmax == "MI":
t_prop[1] = value
else:
t_prop[2] = value
if not exists:
if minmax == "MI":
export_db[category].append([key, value, 0.0])
else:
export_db[category].append([key, 0.0, value])
exists = False
#--------Clean data base by deleting all values [name, 0, 0]
cleaned_db = []
for t_prop in export_db[category]:
if t_prop[1] != 0.0 or t_prop[2] != 0.0:
cleaned_db.append(t_prop)
export_db[category] = cleaned_db
if len(export_db[category]) < 1:
del export_db[category]
#--------Save file
with open(filepath, "w") as j_file:
json.dump(export_db, j_file, indent=2)
j_file.close()
def load_transformation(self, filepath, category, minmax):
self.humanoid.reset_character()
import_db = file_ops.load_json_data(filepath, "import step transformation file.")
#------------------ Create a temp list with all values to change
temp_list = {}
for t_prop in import_db[category]:
if minmax == "MI":
temp_list[t_prop[0]] = (t_prop[1] * 0.5) + 0.5
else:
temp_list[t_prop[0]] = (t_prop[2] * 0.5) + 0.5
#------------------ Now we put the values in humanoid database.
for key, item in temp_list.items():
# Had to do this because sometimes names in standard files are not
# complete, example BreastTone instead of Torso_BreastTone.
for m_key in self.humanoid.character_data.keys():
if key in m_key:
self.humanoid.character_data[m_key] = item
self.humanoid.update_character()
def check_compatibility_with_current_model(self, filepath):
data_base = file_ops.load_json_data(filepath, "Read transformation file to check compatibility.")
txt = {}
txt["About"] = [
"Check if some entries in transformation database are not valid.",
"Could be a wrong name, an unknown name or a name for another model.",
"For the case of trying to use transformations from one model to another",
"too many unused morphs may create weird results."]
txt_key = ""
obj = bpy.types.Object
exists = False
for key in data_base.keys():
if key == "fat_data":
txt_key = "About mass"
elif key == "muscle_data":
txt_key = "About tone"
else:
txt_key = "About " + key.split("_")[0]
if txt_key not in txt:
txt[txt_key] = []
#--------------------
for t_prop in data_base[key]:
exists = False
for m_prop in self.humanoid.character_data.keys():
if t_prop[0] in m_prop:
exists = True
break
if not exists:
txt[txt_key].append(t_prop[0] + " may not be used")
filepath += ".txt"
with open(filepath, "w") as j_file:
json.dump(txt, j_file, indent=2)
j_file.close()
def save_current_model(self, filepath):
transf_data = self.humanoid.transformations_data
with open(filepath, "w") as j_file:
json.dump(transf_data, j_file, indent=2)
j_file.close()