forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
descriptorindexing.cpp
414 lines (356 loc) · 17.5 KB
/
descriptorindexing.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/*
* Vulkan Example - Descriptor indexing (VK_EXT_descriptor_indexing)
*
* Demonstrates use of descriptor indexing to dynamically index into a variable sized array of samples
*
* Relevant code parts are marked with [POI]
*
* Copyright (C) 2021 Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#define ENABLE_VALIDATION false
class VulkanExample : public VulkanExampleBase
{
public:
// We will be dynamically indexing into an array of samplers
std::vector<vks::Texture2D> textures;
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
uint32_t indexCount;
vks::Buffer uniformBufferVS;
struct {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
} uboVS;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VkPhysicalDeviceDescriptorIndexingFeaturesEXT physicalDeviceDescriptorIndexingFeatures{};
struct Vertex {
float pos[3];
float uv[2];
int32_t textureIndex;
};
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Descriptor indexing";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -10.0f));
camera.setRotation(glm::vec3(-35.0f, 0.0f, 0.0f));
camera.setPerspective(45.0f, (float)width / (float)height, 0.1f, 256.0f);
// [POI] Enable required extensions
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE3_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME);
// [POI] Enable required extension features
physicalDeviceDescriptorIndexingFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT;
physicalDeviceDescriptorIndexingFeatures.shaderSampledImageArrayNonUniformIndexing = VK_TRUE;
physicalDeviceDescriptorIndexingFeatures.runtimeDescriptorArray = VK_TRUE;
physicalDeviceDescriptorIndexingFeatures.descriptorBindingVariableDescriptorCount = VK_TRUE;
deviceCreatepNextChain = &physicalDeviceDescriptorIndexingFeatures;
}
~VulkanExample()
{
for (auto &texture : textures) {
texture.destroy();
}
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vertexBuffer.destroy();
indexBuffer.destroy();
uniformBufferVS.destroy();
}
struct V {
uint8_t r;
uint8_t g;
uint8_t b;
uint8_t a;
};
// Generate some random textures
void generateTextures()
{
textures.resize(32);
for (size_t i = 0; i < textures.size(); i++) {
std::random_device rndDevice;
std::default_random_engine rndEngine(rndDevice());
std::uniform_int_distribution<short> rndDist(50, 255);
const int32_t dim = 3;
const size_t bufferSize = dim * dim * 4;
std::vector<uint8_t> texture(bufferSize);
for (size_t i = 0; i < dim * dim; i++) {
texture[i * 4] = rndDist(rndEngine);
texture[i * 4 + 1] = rndDist(rndEngine);
texture[i * 4 + 2] = rndDist(rndEngine);
texture[i * 4 + 3] = 255;
}
textures[i].fromBuffer(texture.data(), bufferSize, VK_FORMAT_R8G8B8A8_UNORM, dim, dim, vulkanDevice, queue, VK_FILTER_NEAREST);
}
}
// Generates a line of cubes with randomized per-face texture indices
void generateCubes()
{
std::vector<Vertex> vertices;
std::vector<uint32_t> indices;
// Generate random per-face texture indices
std::random_device rndDevice;
std::default_random_engine rndEngine(rndDevice());
std::uniform_int_distribution<int32_t> rndDist(0, static_cast<uint32_t>(textures.size()) - 1);
// Generate cubes with random per-face texture indices
const uint32_t count = 6;
for (uint32_t i = 0; i < count; i++) {
// Get random per-Face texture indices that the shader will sample from
int32_t textureIndices[6];
for (uint32_t j = 0; j < 6; j++) {
textureIndices[j] = rndDist(rndEngine);
}
// Push vertices to buffer
float pos = 2.5f * i - (count * 2.5f / 2.0f);
const std::vector<Vertex> cube = {
{ { -1.0f + pos, -1.0f, 1.0f }, { 0.0f, 0.0f }, textureIndices[0] },
{ { 1.0f + pos, -1.0f, 1.0f }, { 1.0f, 0.0f }, textureIndices[0] },
{ { 1.0f + pos, 1.0f, 1.0f }, { 1.0f, 1.0f }, textureIndices[0] },
{ { -1.0f + pos, 1.0f, 1.0f }, { 0.0f, 1.0f }, textureIndices[0] },
{ { 1.0f + pos, 1.0f, 1.0f }, { 0.0f, 0.0f }, textureIndices[1] },
{ { 1.0f + pos, 1.0f, -1.0f }, { 1.0f, 0.0f }, textureIndices[1] },
{ { 1.0f + pos, -1.0f, -1.0f }, { 1.0f, 1.0f }, textureIndices[1] },
{ { 1.0f + pos, -1.0f, 1.0f }, { 0.0f, 1.0f }, textureIndices[1] },
{ { -1.0f + pos, -1.0f, -1.0f }, { 0.0f, 0.0f }, textureIndices[2] },
{ { 1.0f + pos, -1.0f, -1.0f }, { 1.0f, 0.0f }, textureIndices[2] },
{ { 1.0f + pos, 1.0f, -1.0f }, { 1.0f, 1.0f }, textureIndices[2] },
{ { -1.0f + pos, 1.0f, -1.0f }, { 0.0f, 1.0f }, textureIndices[2] },
{ { -1.0f + pos, -1.0f, -1.0f }, { 0.0f, 0.0f }, textureIndices[3] },
{ { -1.0f + pos, -1.0f, 1.0f }, { 1.0f, 0.0f }, textureIndices[3] },
{ { -1.0f + pos, 1.0f, 1.0f }, { 1.0f, 1.0f }, textureIndices[3] },
{ { -1.0f + pos, 1.0f, -1.0f }, { 0.0f, 1.0f }, textureIndices[3] },
{ { 1.0f + pos, 1.0f, 1.0f }, { 0.0f, 0.0f }, textureIndices[4] },
{ { -1.0f + pos, 1.0f, 1.0f }, { 1.0f, 0.0f }, textureIndices[4] },
{ { -1.0f + pos, 1.0f, -1.0f }, { 1.0f, 1.0f }, textureIndices[4] },
{ { 1.0f + pos, 1.0f, -1.0f }, { 0.0f, 1.0f }, textureIndices[4] },
{ { -1.0f + pos, -1.0f, -1.0f }, { 0.0f, 0.0f }, textureIndices[5] },
{ { 1.0f + pos, -1.0f, -1.0f }, { 1.0f, 0.0f }, textureIndices[5] },
{ { 1.0f + pos, -1.0f, 1.0f }, { 1.0f, 1.0f }, textureIndices[5] },
{ { -1.0f + pos, -1.0f, 1.0f }, { 0.0f, 1.0f }, textureIndices[5] },
};
for (auto& vertex : cube) {
vertices.push_back(vertex);
}
// Push indices to buffer
const std::vector<uint32_t> cubeIndices = {
0,1,2,0,2,3,
4,5,6,4,6,7,
8,9,10,8,10,11,
12,13,14,12,14,15,
16,17,18,16,18,19,
20,21,22,20,22,23
};
for (auto& index : cubeIndices) {
indices.push_back(index + static_cast<uint32_t>(vertices.size()));
}
}
indexCount = static_cast<uint32_t>(indices.size());
// For the sake of simplicity we won't stage the vertex data to the gpu memory
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&vertexBuffer,
vertices.size() * sizeof(Vertex),
vertices.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&indexBuffer,
indices.size() * sizeof(uint32_t),
indices.data()));
}
// [POI] Set up descriptor sets and set layout
void setupDescriptorSets()
{
// Descriptor pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast<uint32_t>(textures.size()))
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Descriptor set layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
// [POI] Binding 1 contains a texture array that is dynamically non-uniform sampled from
// In the fragment shader:
// outFragColor = texture(textures[nonuniformEXT(inTexIndex)], inUV);
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1, static_cast<uint32_t>(textures.size()))
};
// [POI] The fragment shader will be using an unsized array of samplers, which has to be marked with the VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT
// In the fragment shader:
// layout (set = 0, binding = 1) uniform sampler2D textures[];
VkDescriptorSetLayoutBindingFlagsCreateInfoEXT setLayoutBindingFlags{};
setLayoutBindingFlags.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT;
setLayoutBindingFlags.bindingCount = 2;
std::vector<VkDescriptorBindingFlagsEXT> descriptorBindingFlags = {
0,
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT
};
setLayoutBindingFlags.pBindingFlags = descriptorBindingFlags.data();
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
descriptorSetLayoutCI.pNext = &setLayoutBindingFlags;
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayout));
// Descriptor sets
VkDescriptorSetVariableDescriptorCountAllocateInfoEXT variableDescriptorCountAllocInfo = {};
uint32_t variableDescCounts[] = { static_cast<uint32_t>(textures.size())};
variableDescriptorCountAllocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO_EXT;
variableDescriptorCountAllocInfo.descriptorSetCount = 1;
variableDescriptorCountAllocInfo.pDescriptorCounts = variableDescCounts;
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
allocInfo.pNext = &variableDescriptorCountAllocInfo;
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets(2);
writeDescriptorSets[0] = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferVS.descriptor);
// Image descriptors for the texture array
std::vector<VkDescriptorImageInfo> textureDescriptors(textures.size());
for (size_t i = 0; i < textures.size(); i++) {
textureDescriptors[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
textureDescriptors[i].sampler = textures[i].sampler;;
textureDescriptors[i].imageView = textures[i].view;
}
// [POI] Second and final descriptor is a texture array
// Unlike an array texture, these are adressed like typical arrays
writeDescriptorSets[1] = {};
writeDescriptorSets[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSets[1].dstBinding = 1;
writeDescriptorSets[1].dstArrayElement = 0;
writeDescriptorSets[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writeDescriptorSets[1].descriptorCount = static_cast<uint32_t>(textures.size());
writeDescriptorSets[1].pBufferInfo = 0;
writeDescriptorSets[1].dstSet = descriptorSet;
writeDescriptorSets[1].pImageInfo = textureDescriptors.data();
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
// Vertex bindings and attributes
VkVertexInputBindingDescription vertexInputBinding = { 0, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX };
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
{ 0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos) },
{ 1, 0, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv) },
{ 2, 0, VK_FORMAT_R32_SINT, offsetof(Vertex, textureIndex) }
};
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputStateCI.vertexBindingDescriptionCount = 1;
vertexInputStateCI.pVertexBindingDescriptions = &vertexInputBinding;
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
// Instacing pipeline
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "descriptorindexing/descriptorindexing.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
// [POI] The fragment shader does non-uniform access into our sampler array, so we need to use nonuniformEXT: texture(textures[nonuniformEXT(inTexIndex)], inUV)
shaderStages[1] = loadShader(getShadersPath() + "descriptorindexing/descriptorindexing.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pVertexInputState = &vertexInputStateCI;
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
}
void prepareUniformBuffers()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBufferVS,
sizeof(uboVS)));
VK_CHECK_RESULT(uniformBufferVS.map());
updateUniformBuffersCamera();
}
void updateUniformBuffersCamera()
{
uboVS.projection = camera.matrices.perspective;
uboVS.view = camera.matrices.view;
uboVS.model = glm::mat4(1.0f);
memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS));
}
void buildCommandBuffers()
{
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &vertexBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
generateTextures();
generateCubes();
prepareUniformBuffers();
setupDescriptorSets();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (camera.updated)
updateUniformBuffersCamera();
}
};
VULKAN_EXAMPLE_MAIN()