forked from thedmd/imgui-node-editor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimgui_bezier_math.inl
670 lines (561 loc) · 23.3 KB
/
imgui_bezier_math.inl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
//------------------------------------------------------------------------------
// LICENSE
// This software is dual-licensed to the public domain and under the following
// license: you are granted a perpetual, irrevocable license to copy, modify,
// publish, and distribute this file as you see fit.
//
// CREDITS
// Written by Michal Cichon
//------------------------------------------------------------------------------
# ifndef __IMGUI_BEZIER_MATH_INL__
# define __IMGUI_BEZIER_MATH_INL__
# pragma once
//------------------------------------------------------------------------------
# include "imgui_bezier_math.h"
# include <map> // used in ImCubicBezierFixedStep
//------------------------------------------------------------------------------
template <typename T>
inline T ImLinearBezier(const T& p0, const T& p1, float t)
{
return p0 + t * (p1 - p0);
}
template <typename T>
inline T ImLinearBezierDt(const T& p0, const T& p1, float t)
{
IM_UNUSED(t);
return p1 - p0;
}
template <typename T>
inline T ImQuadraticBezier(const T& p0, const T& p1, const T& p2, float t)
{
const auto a = 1 - t;
return a * a * p0 + 2 * t * a * p1 + t * t * p2;
}
template <typename T>
inline T ImQuadraticBezierDt(const T& p0, const T& p1, const T& p2, float t)
{
return 2 * (1 - t) * (p1 - p0) + 2 * t * (p2 - p1);
}
template <typename T>
inline T ImCubicBezier(const T& p0, const T& p1, const T& p2, const T& p3, float t)
{
const auto a = 1 - t;
const auto b = a * a * a;
const auto c = t * t * t;
return b * p0 + 3 * t * a * a * p1 + 3 * t * t * a * p2 + c * p3;
}
template <typename T>
inline T ImCubicBezierDt(const T& p0, const T& p1, const T& p2, const T& p3, float t)
{
const auto a = 1 - t;
const auto b = a * a;
const auto c = t * t;
const auto d = 2 * t * a;
return -3 * p0 * b + 3 * p1 * (b - d) + 3 * p2 * (d - c) + 3 * p3 * c;
}
template <typename T>
inline T ImCubicBezierSample(const T& p0, const T& p1, const T& p2, const T& p3, float t)
{
const auto cp0_zero = ImLengthSqr(p1 - p0) < 1e-5f;
const auto cp1_zero = ImLengthSqr(p3 - p2) < 1e-5f;
if (cp0_zero && cp1_zero)
return ImLinearBezier(p0, p3, t);
else if (cp0_zero)
return ImQuadraticBezier(p0, p2, p3, t);
else if (cp1_zero)
return ImQuadraticBezier(p0, p1, p3, t);
else
return ImCubicBezier(p0, p1, p2, p3, t);
}
template <typename T>
inline T ImCubicBezierSample(const ImCubicBezierPointsT<T>& curve, float t)
{
return ImCubicBezierSample(curve.P0, curve.P1, curve.P2, curve.P3, t);
}
template <typename T>
inline T ImCubicBezierTangent(const T& p0, const T& p1, const T& p2, const T& p3, float t)
{
const auto cp0_zero = ImLengthSqr(p1 - p0) < 1e-5f;
const auto cp1_zero = ImLengthSqr(p3 - p2) < 1e-5f;
if (cp0_zero && cp1_zero)
return ImLinearBezierDt(p0, p3, t);
else if (cp0_zero)
return ImQuadraticBezierDt(p0, p2, p3, t);
else if (cp1_zero)
return ImQuadraticBezierDt(p0, p1, p3, t);
else
return ImCubicBezierDt(p0, p1, p2, p3, t);
}
template <typename T>
inline T ImCubicBezierTangent(const ImCubicBezierPointsT<T>& curve, float t)
{
return ImCubicBezierTangent(curve.P0, curve.P1, curve.P2, curve.P3, t);
}
template <typename T>
inline float ImCubicBezierLength(const T& p0, const T& p1, const T& p2, const T& p3)
{
// Legendre-Gauss abscissae with n=24 (x_i values, defined at i=n as the roots of the nth order Legendre polynomial Pn(x))
static const float t_values[] =
{
-0.0640568928626056260850430826247450385909f,
0.0640568928626056260850430826247450385909f,
-0.1911188674736163091586398207570696318404f,
0.1911188674736163091586398207570696318404f,
-0.3150426796961633743867932913198102407864f,
0.3150426796961633743867932913198102407864f,
-0.4337935076260451384870842319133497124524f,
0.4337935076260451384870842319133497124524f,
-0.5454214713888395356583756172183723700107f,
0.5454214713888395356583756172183723700107f,
-0.6480936519369755692524957869107476266696f,
0.6480936519369755692524957869107476266696f,
-0.7401241915785543642438281030999784255232f,
0.7401241915785543642438281030999784255232f,
-0.8200019859739029219539498726697452080761f,
0.8200019859739029219539498726697452080761f,
-0.8864155270044010342131543419821967550873f,
0.8864155270044010342131543419821967550873f,
-0.9382745520027327585236490017087214496548f,
0.9382745520027327585236490017087214496548f,
-0.9747285559713094981983919930081690617411f,
0.9747285559713094981983919930081690617411f,
-0.9951872199970213601799974097007368118745f,
0.9951872199970213601799974097007368118745f
};
// Legendre-Gauss weights with n=24 (w_i values, defined by a function linked to in the Bezier primer article)
static const float c_values[] =
{
0.1279381953467521569740561652246953718517f,
0.1279381953467521569740561652246953718517f,
0.1258374563468282961213753825111836887264f,
0.1258374563468282961213753825111836887264f,
0.1216704729278033912044631534762624256070f,
0.1216704729278033912044631534762624256070f,
0.1155056680537256013533444839067835598622f,
0.1155056680537256013533444839067835598622f,
0.1074442701159656347825773424466062227946f,
0.1074442701159656347825773424466062227946f,
0.0976186521041138882698806644642471544279f,
0.0976186521041138882698806644642471544279f,
0.0861901615319532759171852029837426671850f,
0.0861901615319532759171852029837426671850f,
0.0733464814110803057340336152531165181193f,
0.0733464814110803057340336152531165181193f,
0.0592985849154367807463677585001085845412f,
0.0592985849154367807463677585001085845412f,
0.0442774388174198061686027482113382288593f,
0.0442774388174198061686027482113382288593f,
0.0285313886289336631813078159518782864491f,
0.0285313886289336631813078159518782864491f,
0.0123412297999871995468056670700372915759f,
0.0123412297999871995468056670700372915759f
};
static_assert(sizeof(t_values) / sizeof(*t_values) == sizeof(c_values) / sizeof(*c_values), "");
auto arc = [p0, p1, p2, p3](float t)
{
const auto p = ImCubicBezierDt(p0, p1, p2, p3, t);
const auto l = ImLength(p);
return l;
};
const auto z = 0.5f;
const auto n = sizeof(t_values) / sizeof(*t_values);
auto accumulator = 0.0f;
for (size_t i = 0; i < n; ++i)
{
const auto t = z * t_values[i] + z;
accumulator += c_values[i] * arc(t);
}
return z * accumulator;
}
template <typename T>
inline float ImCubicBezierLength(const ImCubicBezierPointsT<T>& curve)
{
return ImCubicBezierLength(curve.P0, curve.P1, curve.P2, curve.P3);
}
template <typename T>
inline ImCubicBezierSplitResultT<T> ImCubicBezierSplit(const T& p0, const T& p1, const T& p2, const T& p3, float t)
{
const auto z1 = t;
const auto z2 = z1 * z1;
const auto z3 = z1 * z1 * z1;
const auto s1 = z1 - 1;
const auto s2 = s1 * s1;
const auto s3 = s1 * s1 * s1;
return ImCubicBezierSplitResultT<T>
{
ImCubicBezierPointsT<T>
{
p0,
z1 * p1 - s1 * p0,
z2 * p2 - 2 * z1 * s1 * p1 + s2 * p0,
z3 * p3 - 3 * z2 * s1 * p2 + 3 * z1 * s2 * p1 - s3 * p0
},
ImCubicBezierPointsT<T>
{
z3 * p0 - 3 * z2 * s1 * p1 + 3 * z1 * s2 * p2 - s3 * p3,
z2 * p1 - 2 * z1 * s1 * p2 + s2 * p3,
z1 * p2 - s1 * p3,
p3,
}
};
}
template <typename T>
inline ImCubicBezierSplitResultT<T> ImCubicBezierSplit(const ImCubicBezierPointsT<T>& curve, float t)
{
return ImCubicBezierSplit(curve.P0, curve.P1, curve.P2, curve.P3, t);
}
inline ImRect ImCubicBezierBoundingRect(const ImVec2& p0, const ImVec2& p1, const ImVec2& p2, const ImVec2& p3)
{
auto a = 3 * p3 - 9 * p2 + 9 * p1 - 3 * p0;
auto b = 6 * p0 - 12 * p1 + 6 * p2;
auto c = 3 * p1 - 3 * p0;
auto delta_squared = ImMul(b, b) - 4 * ImMul(a, c);
auto tl = ImMin(p0, p3);
auto rb = ImMax(p0, p3);
# define IM_VEC2_INDEX(v, i) *(&v.x + i)
for (int i = 0; i < 2; ++i)
{
if (IM_VEC2_INDEX(delta_squared, i) >= 0)
{
auto delta = ImSqrt(IM_VEC2_INDEX(delta_squared, i));
auto t0 = (-IM_VEC2_INDEX(b, i) + delta) / (2 * IM_VEC2_INDEX(a, i));
if (t0 > 0 && t0 < 1)
{
auto p = ImCubicBezier(IM_VEC2_INDEX(p0, i), IM_VEC2_INDEX(p1, i), IM_VEC2_INDEX(p2, i), IM_VEC2_INDEX(p3, i), t0);
IM_VEC2_INDEX(tl, i) = ImMin(IM_VEC2_INDEX(tl, i), p);
IM_VEC2_INDEX(rb, i) = ImMax(IM_VEC2_INDEX(rb, i), p);
}
auto t1 = (-IM_VEC2_INDEX(b, i) - delta) / (2 * IM_VEC2_INDEX(a, i));
if (t1 > 0 && t1 < 1)
{
auto p = ImCubicBezier(IM_VEC2_INDEX(p0, i), IM_VEC2_INDEX(p1, i), IM_VEC2_INDEX(p2, i), IM_VEC2_INDEX(p3, i), t1);
IM_VEC2_INDEX(tl, i) = ImMin(IM_VEC2_INDEX(tl, i), p);
IM_VEC2_INDEX(rb, i) = ImMax(IM_VEC2_INDEX(rb, i), p);
}
}
}
# undef IM_VEC2_INDEX
return ImRect(tl, rb);
}
inline ImRect ImCubicBezierBoundingRect(const ImCubicBezierPoints& curve)
{
return ImCubicBezierBoundingRect(curve.P0, curve.P1, curve.P2, curve.P3);
}
inline ImProjectResult ImProjectOnCubicBezier(const ImVec2& point, const ImVec2& p0, const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, const int subdivisions)
{
// http://pomax.github.io/bezierinfo/#projections
const float epsilon = 1e-5f;
const float fixed_step = 1.0f / static_cast<float>(subdivisions - 1);
ImProjectResult result;
result.Point = point;
result.Time = 0.0f;
result.Distance = FLT_MAX;
// Step 1: Coarse check
for (int i = 0; i < subdivisions; ++i)
{
auto t = i * fixed_step;
auto p = ImCubicBezier(p0, p1, p2, p3, t);
auto s = point - p;
auto d = ImDot(s, s);
if (d < result.Distance)
{
result.Point = p;
result.Time = t;
result.Distance = d;
}
}
if (result.Time == 0.0f || ImFabs(result.Time - 1.0f) <= epsilon)
{
result.Distance = ImSqrt(result.Distance);
return result;
}
// Step 2: Fine check
auto left = result.Time - fixed_step;
auto right = result.Time + fixed_step;
auto step = fixed_step * 0.1f;
for (auto t = left; t < right + step; t += step)
{
auto p = ImCubicBezier(p0, p1, p2, p3, t);
auto s = point - p;
auto d = ImDot(s, s);
if (d < result.Distance)
{
result.Point = p;
result.Time = t;
result.Distance = d;
}
}
result.Distance = ImSqrt(result.Distance);
return result;
}
inline ImProjectResult ImProjectOnCubicBezier(const ImVec2& p, const ImCubicBezierPoints& curve, const int subdivisions)
{
return ImProjectOnCubicBezier(p, curve.P0, curve.P1, curve.P2, curve.P3, subdivisions);
}
inline ImCubicBezierIntersectResult ImCubicBezierLineIntersect(const ImVec2& p0, const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, const ImVec2& a0, const ImVec2& a1)
{
auto cubic_roots = [](float a, float b, float c, float d, float* roots) -> int
{
int count = 0;
auto sign = [](float x) -> float { return x < 0 ? -1.0f : 1.0f; };
auto A = b / a;
auto B = c / a;
auto C = d / a;
auto Q = (3 * B - ImPow(A, 2)) / 9;
auto R = (9 * A * B - 27 * C - 2 * ImPow(A, 3)) / 54;
auto D = ImPow(Q, 3) + ImPow(R, 2); // polynomial discriminant
if (D >= 0) // complex or duplicate roots
{
auto S = sign(R + ImSqrt(D)) * ImPow(ImFabs(R + ImSqrt(D)), (1.0f / 3.0f));
auto T = sign(R - ImSqrt(D)) * ImPow(ImFabs(R - ImSqrt(D)), (1.0f / 3.0f));
roots[0] = -A / 3 + (S + T); // real root
roots[1] = -A / 3 - (S + T) / 2; // real part of complex root
roots[2] = -A / 3 - (S + T) / 2; // real part of complex root
auto Im = ImFabs(ImSqrt(3) * (S - T) / 2); // complex part of root pair
// discard complex roots
if (Im != 0)
count = 1;
else
count = 3;
}
else // distinct real roots
{
auto th = ImAcos(R / ImSqrt(-ImPow(Q, 3)));
roots[0] = 2 * ImSqrt(-Q) * ImCos(th / 3) - A / 3;
roots[1] = 2 * ImSqrt(-Q) * ImCos((th + 2 * IM_PI) / 3) - A / 3;
roots[2] = 2 * ImSqrt(-Q) * ImCos((th + 4 * IM_PI) / 3) - A / 3;
count = 3;
}
return count;
};
// https://github.com/kaishiqi/Geometric-Bezier/blob/master/GeometricBezier/src/kaishiqi/geometric/intersection/Intersection.as
//
// Start with Bezier using Bernstein polynomials for weighting functions:
// (1-t^3)P0 + 3t(1-t)^2P1 + 3t^2(1-t)P2 + t^3P3
//
// Expand and collect terms to form linear combinations of original Bezier
// controls. This ends up with a vector cubic in t:
// (-P0+3P1-3P2+P3)t^3 + (3P0-6P1+3P2)t^2 + (-3P0+3P1)t + P0
// /\ /\ /\ /\
// || || || ||
// c3 c2 c1 c0
// Calculate the coefficients
auto c3 = -p0 + 3 * p1 - 3 * p2 + p3;
auto c2 = 3 * p0 - 6 * p1 + 3 * p2;
auto c1 = -3 * p0 + 3 * p1;
auto c0 = p0;
// Convert line to normal form: ax + by + c = 0
auto a = a1.y - a0.y;
auto b = a0.x - a1.x;
auto c = a0.x * (a0.y - a1.y) + a0.y * (a1.x - a0.x);
// Rotate each cubic coefficient using line for new coordinate system?
// Find roots of rotated cubic
float roots[3];
auto rootCount = cubic_roots(
a * c3.x + b * c3.y,
a * c2.x + b * c2.y,
a * c1.x + b * c1.y,
a * c0.x + b * c0.y + c,
roots);
// Any roots in closed interval [0,1] are intersections on Bezier, but
// might not be on the line segment.
// Find intersections and calculate point coordinates
auto min = ImMin(a0, a1);
auto max = ImMax(a0, a1);
ImCubicBezierIntersectResult result;
auto points = result.Points;
for (int i = 0; i < rootCount; ++i)
{
auto root = roots[i];
if (0 <= root && root <= 1)
{
// We're within the Bezier curve
// Find point on Bezier
auto p = ImCubicBezier(p0, p1, p2, p3, root);
// See if point is on line segment
// Had to make special cases for vertical and horizontal lines due
// to slight errors in calculation of p00
if (a0.x == a1.x)
{
if (min.y <= p.y && p.y <= max.y)
*points++ = p;
}
else if (a0.y == a1.y)
{
if (min.x <= p.x && p.x <= max.x)
*points++ = p;
}
else if (p.x >= min.x && p.y >= min.y && p.x <= max.x && p.y <= max.y)
{
*points++ = p;
}
}
}
result.Count = static_cast<int>(points - result.Points);
return result;
}
inline ImCubicBezierIntersectResult ImCubicBezierLineIntersect(const ImCubicBezierPoints& curve, const ImLine& line)
{
return ImCubicBezierLineIntersect(curve.P0, curve.P1, curve.P2, curve.P3, line.A, line.B);
}
inline void ImCubicBezierSubdivide(ImCubicBezierSubdivideCallback callback, void* user_pointer, const ImVec2& p0, const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, float tess_tol, ImCubicBezierSubdivideFlags flags)
{
return ImCubicBezierSubdivide(callback, user_pointer, ImCubicBezierPoints{ p0, p1, p2, p3 }, tess_tol, flags);
}
inline void ImCubicBezierSubdivide(ImCubicBezierSubdivideCallback callback, void* user_pointer, const ImCubicBezierPoints& curve, float tess_tol, ImCubicBezierSubdivideFlags flags)
{
struct Tesselator
{
ImCubicBezierSubdivideCallback Callback;
void* UserPointer;
float TesselationTollerance;
ImCubicBezierSubdivideFlags Flags;
void Commit(const ImVec2& p, const ImVec2& t)
{
ImCubicBezierSubdivideSample sample;
sample.Point = p;
sample.Tangent = t;
Callback(sample, UserPointer);
}
void Subdivide(const ImCubicBezierPoints& curve, int level = 0)
{
float dx = curve.P3.x - curve.P0.x;
float dy = curve.P3.y - curve.P0.y;
float d2 = ((curve.P1.x - curve.P3.x) * dy - (curve.P1.y - curve.P3.y) * dx);
float d3 = ((curve.P2.x - curve.P3.x) * dy - (curve.P2.y - curve.P3.y) * dx);
d2 = (d2 >= 0) ? d2 : -d2;
d3 = (d3 >= 0) ? d3 : -d3;
if ((d2 + d3) * (d2 + d3) < TesselationTollerance * (dx * dx + dy * dy))
{
Commit(curve.P3, ImCubicBezierTangent(curve, 1.0f));
}
else if (level < 10)
{
const auto p12 = (curve.P0 + curve.P1) * 0.5f;
const auto p23 = (curve.P1 + curve.P2) * 0.5f;
const auto p34 = (curve.P2 + curve.P3) * 0.5f;
const auto p123 = (p12 + p23) * 0.5f;
const auto p234 = (p23 + p34) * 0.5f;
const auto p1234 = (p123 + p234) * 0.5f;
Subdivide(ImCubicBezierPoints { curve.P0, p12, p123, p1234 }, level + 1);
Subdivide(ImCubicBezierPoints { p1234, p234, p34, curve.P3 }, level + 1);
}
}
};
if (tess_tol < 0)
tess_tol = 1.118f; // sqrtf(1.25f)
Tesselator tesselator;
tesselator.Callback = callback;
tesselator.UserPointer = user_pointer;
tesselator.TesselationTollerance = tess_tol * tess_tol;
tesselator.Flags = flags;
if (!(tesselator.Flags & ImCubicBezierSubdivide_SkipFirst))
tesselator.Commit(curve.P0, ImCubicBezierTangent(curve, 0.0f));
tesselator.Subdivide(curve, 0);
}
template <typename F> inline void ImCubicBezierSubdivide(F& callback, const ImVec2& p0, const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, float tess_tol, ImCubicBezierSubdivideFlags flags)
{
auto handler = [](const ImCubicBezierSubdivideSample& p, void* user_pointer)
{
auto& callback = *reinterpret_cast<F*>(user_pointer);
callback(p);
};
ImCubicBezierSubdivide(handler, &callback, ImCubicBezierPoints{ p0, p1, p2, p3 }, tess_tol, flags);
}
template <typename F> inline void ImCubicBezierSubdivide(F& callback, const ImCubicBezierPoints& curve, float tess_tol, ImCubicBezierSubdivideFlags flags)
{
auto handler = [](const ImCubicBezierSubdivideSample& p, void* user_pointer)
{
auto& callback = *reinterpret_cast<F*>(user_pointer);
callback(p);
};
ImCubicBezierSubdivide(handler, &callback, curve, tess_tol, flags);
}
inline void ImCubicBezierFixedStep(ImCubicBezierFixedStepCallback callback, void* user_pointer, const ImVec2& p0, const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, float step, bool overshoot, float max_value_error, float max_t_error)
{
if (step <= 0.0f || !callback || max_value_error <= 0 || max_t_error <= 0)
return;
ImCubicBezierFixedStepSample sample;
sample.T = 0.0f;
sample.Length = 0.0f;
sample.Point = p0;
sample.BreakSearch = false;
callback(sample, user_pointer);
if (sample.BreakSearch)
return;
const auto total_length = ImCubicBezierLength(p0, p1, p2, p3);
const auto point_count = static_cast<int>(total_length / step) + (overshoot ? 2 : 1);
const auto t_min = 0.0f;
const auto t_max = step * point_count / total_length;
const auto t_0 = (t_min + t_max) * 0.5f;
// #todo: replace map with ImVector + binary search
std::map<float, float> cache;
for (int point_index = 1; point_index < point_count; ++point_index)
{
const auto targetLength = point_index * step;
float t_start = t_min;
float t_end = t_max;
float t = t_0;
float t_best = t;
float error_best = total_length;
while (true)
{
auto cacheIt = cache.find(t);
if (cacheIt == cache.end())
{
const auto front = ImCubicBezierSplit(p0, p1, p2, p3, t).Left;
const auto split_length = ImCubicBezierLength(front);
cacheIt = cache.emplace(t, split_length).first;
}
const auto length = cacheIt->second;
const auto error = targetLength - length;
if (error < error_best)
{
error_best = error;
t_best = t;
}
if (ImFabs(error) <= max_value_error || ImFabs(t_start - t_end) <= max_t_error)
{
sample.T = t;
sample.Length = length;
sample.Point = ImCubicBezier(p0, p1, p2, p3, t);
callback(sample, user_pointer);
if (sample.BreakSearch)
return;
break;
}
else if (error < 0.0f)
t_end = t;
else // if (error > 0.0f)
t_start = t;
t = (t_start + t_end) * 0.5f;
}
}
}
inline void ImCubicBezierFixedStep(ImCubicBezierFixedStepCallback callback, void* user_pointer, const ImCubicBezierPoints& curve, float step, bool overshoot, float max_value_error, float max_t_error)
{
ImCubicBezierFixedStep(callback, user_pointer, curve.P0, curve.P1, curve.P2, curve.P3, step, overshoot, max_value_error, max_t_error);
}
// F has signature void(const ImCubicBezierFixedStepSample& p)
template <typename F>
inline void ImCubicBezierFixedStep(F& callback, const ImVec2& p0, const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, float step, bool overshoot, float max_value_error, float max_t_error)
{
auto handler = [](ImCubicBezierFixedStepSample& sample, void* user_pointer)
{
auto& callback = *reinterpret_cast<F*>(user_pointer);
callback(sample);
};
ImCubicBezierFixedStep(handler, &callback, p0, p1, p2, p3, step, overshoot, max_value_error, max_t_error);
}
template <typename F>
inline void ImCubicBezierFixedStep(F& callback, const ImCubicBezierPoints& curve, float step, bool overshoot, float max_value_error, float max_t_error)
{
auto handler = [](ImCubicBezierFixedStepSample& sample, void* user_pointer)
{
auto& callback = *reinterpret_cast<F*>(user_pointer);
callback(sample);
};
ImCubicBezierFixedStep(handler, &callback, curve.P0, curve.P1, curve.P2, curve.P3, step, overshoot, max_value_error, max_t_error);
}
//------------------------------------------------------------------------------
# endif // __IMGUI_BEZIER_MATH_INL__