Identification system based on eye movements modeled as an Ornstein-Uhlenbeck process (Paper).
Install required libraries with Anaconda:
conda create --name gazeID -c conda-forge --file requirements.txt
conda activate gazeID
Install NSLR-HMM
python -m pip install git+https://gitlab.com/nslr/nslr
Extract Ornstein-Uhlenbeck features from FIFA-DB dataset (datasets/FIFA
) launching the module extract_OU_params.py
, results will be saved in features/FIFA_OU_posterior_VI
.
Module event_kfold.py
exploits SVMs for classification on the features extracted as an Ornstein-Uhlenbeck process via a Nested cross-validation procedure.
If you use this code, please cite the paper:
@article{damelio2023using,
AUTHOR = {D’Amelio, Alessandro and Patania, Sabrina and Bursic, Sathya and Cuculo, Vittorio and Boccignone, Giuseppe},
TITLE = {Using Gaze for Behavioural Biometrics},
JOURNAL = {Sensors},
VOLUME = {23},
YEAR = {2023},
NUMBER = {3},
ARTICLE-NUMBER = {1262},
URL = {https://www.mdpi.com/1424-8220/23/3/1262},
ISSN = {1424-8220},
DOI = {10.3390/s23031262}
}
@article{d2021gazing,
title={Gazing at Social Interactions Between Foraging and Decision Theory},
author={D'Amelio, Alessandro and Boccignone, Giuseppe},
journal={Frontiers in neurorobotics},
volume={15},
pages={31},
year={2021},
publisher={Frontiers}
}
@article{boccignone2020gaze,
title={On gaze deployment to audio-visual cues of social interactions},
author={Boccignone, Giuseppe and Cuculo, Vittorio and D’Amelio, Alessandro and Grossi, Giuliano and Lanzarotti, Raffaella},
journal={IEEE Access},
volume={8},
pages={161630--161654},
year={2020},
publisher={IEEE}
}