-
Notifications
You must be signed in to change notification settings - Fork 246
/
data.py
472 lines (417 loc) · 18.6 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import os
import io
import sys
import mxnet as mx
import numpy as np
import cv2
import logging
import lmdb
import leveldb
import random
import shutil
from datetime import datetime
from PIL import Image
import StringIO
import time
from multiprocessing.pool import ThreadPool
import argparse
def get_prop(txn, key, default, check=False):
v = txn.get(key)
if v is None:
txn.put(key, str(default))
v = default
v = type(default)(v)
if check:
assert v == default, "%s != %s"%(str(v), str(default))
return v
def addto_db(db_path, path, suffix_list, chunk_size=24*60*3, chunk_base=10000, movie_base=1000000):
def show_progress(name):
if show_progress.i % 1000 == 0:
print name, show_progress.i
show_progress.i += 1
prefix = os.path.basename(path)
N = 0
sprefix_list = ''
sidx = ''
env = lmdb.open(db_path, map_size=1<<40, max_dbs=5)
with env.begin(write=True) as txn:
N = get_prop(txn, 'N', N)
chunk_size = get_prop(txn, 'chunk_size', chunk_size)
chunk_base = get_prop(txn, 'chunk_base', chunk_base)
movie_base = get_prop(txn, 'movie_base', movie_base)
sprefix_list = txn.get('prefix_list', sprefix_list)
prefix_list = filter(None, sprefix_list.split(','))
sidx = txn.get('idx', sidx)
idx = filter(None, sidx.split('$'))
if prefix in prefix_list:
print 'Prefix %s already in database!'%prefix
return
prev_ichunk = 0
prev_count = 0
for isuffix, suffix in enumerate(suffix_list):
db = env.open_db(suffix)
rec = mx.recordio.MXRecordIO('%s_%s.rec'%(path, suffix), 'r')
base = N*movie_base
chunks = [[]]
ichunk = 0
count = 0
show_progress.i = 0
with env.begin(write=True) as txn:
while True:
s = rec.read()
if s is None:
break
if count == chunk_size:
count = 0
ichunk += 1
chunks.append([])
i = base + ichunk*chunk_base + count
chunks[-1].append(str(i))
txn.put('%09d'%i, s, db=db)
show_progress(prefix+' '+suffix)
count += 1
assert isuffix == 0 or (prev_ichunk == ichunk and count == prev_count), '%d vs %d or %d vs %d'%(prev_ichunk, ichunk, count, prev_count)
prev_ichunk = ichunk
prev_count = count
print 'Processed %d chunks'%len(chunks)
prefix_list.append(prefix)
idx.append('|'.join([','.join(c) for c in chunks]))
with env.begin(write=True) as txn:
txn.put('N', str(N+1))
txn.put('prefix_list', ','.join(prefix_list))
txn.put('idx', '$'.join(idx))
def show_db(fdb, suffix_list):
print 'Showing db ' + fdb
env = lmdb.open(fdb, max_dbs=5)
with env.begin() as txn:
N = int(txn.get('N'))
chunk_size = int(txn.get('chunk_size'))
chunk_base = int(txn.get('chunk_base'))
movie_base = int(txn.get('movie_base'))
prefix_list = txn.get('prefix_list')
idx = [[[int(k) for k in j.split(',')] for j in i.split('|')] for i in txn.get('idx').split('$')]
print len(idx)
print prefix_list
print N, chunk_size, chunk_base, movie_base
assert len(prefix_list.split(',')) == N
assert len(idx) == N
for i in range(N):
print 'mov', i
base = i * movie_base
ichunk = 0
while True:
pj = None
for suffix in suffix_list:
with env.begin(db=env.open_db(suffix)) as txn:
for j in range(chunk_base):
v = txn.get('%09d'%(base+ichunk*chunk_base+j))
if v is None:
break
assert base+ichunk*chunk_base+j == idx[i][ichunk][j]
assert pj is None or pj == j
pj = j
if j > 0:
assert ichunk < len(idx[i])
assert j == len(idx[i][ichunk]), '%d vs %d'%(j, len(idx[i][ichunk]))
print 'chunk', ichunk
ichunk += 1
if j < chunk_size-1:
print 'mov', i, 'finish at', ichunk
break
assert ichunk == len(idx[i])
def shuffle(path, valid_ratio=0.1, test_ratio=0.3):
sidx = ''
env = lmdb.open(path, map_size=1<<40, max_dbs=5)
with env.begin() as txn:
sidx = txn.get('idx')
prefix_list = txn.get('prefix_list').split(',')
idx = [[[k for k in i.split(',')] for i in j.split('|')][1:-3] for j in sidx.split('$')]
p = list(range(len(idx)))
random.shuffle(p)
idx = [idx[i] for i in p]
prefix_list = [prefix_list[i] for i in p]
sep = int((1-test_ratio)*len(idx))
print 'train ', prefix_list[:sep]
print 'test ', prefix_list[sep:]
train_idx = sum(idx[:sep], [])
random.shuffle(train_idx)
vsep = int((1-valid_ratio)*len(train_idx))
valid_idx = sum(train_idx[vsep:], [])
random.shuffle(valid_idx)
svalid_idx = ','.join(valid_idx)
train_idx = sum(train_idx[:vsep], [])
random.shuffle(train_idx)
strain_idx = ','.join(train_idx)
test_idx = sum(idx[sep:], [])
random.shuffle(test_idx)
test_idx = sum(test_idx, [])
stest_idx = ','.join(test_idx)
random.shuffle(test_idx)
sshuffled_test_idx = ','.join(test_idx)
print len(train_idx), len(valid_idx), len(test_idx)
with env.begin(write=True) as txn:
txn.put('train_idx', strain_idx)
txn.put('valid_idx', svalid_idx)
txn.put('test_idx', stest_idx)
txn.put('shuffled_test_idx', sshuffled_test_idx)
def make_idx(path):
env = lmdb.open(path, map_size=1<<40)
with env.begin() as txn:
idx = [[[k for k in i.split(',')] for i in j.split('|')] for j in txn.get('idx').split('$')]
idx = [sum(i, []) for i in idx]
prefix = [i for i in txn.get('prefix_list').split(',')]
with env.begin(write=True) as txn:
for k, v in zip(prefix, idx):
txn.put(k+'_idx', ','.join(v))
with env.begin() as txn:
for k, v in txn.cursor():
print k
def crop_img(img, p, shape, margin=0, test=False, grid=1):
if p is None:
if test:
p = ((img.shape[1]-shape[0]-margin)/grid/2, (img.shape[0]-shape[1])/grid/2)
else:
p = (random.randint(0, (img.shape[1]-shape[0]-margin)/grid),
random.randint(0, (img.shape[0]-shape[1])/grid))
return img[p[1]*grid:p[1]*grid+shape[1], p[0]*grid:p[0]*grid+shape[0]], p
def load_mean(fname, data_iter, label_mean=False, include=None):
if not fname.endswith('.npz'):
fname += '.npz'
if os.path.isfile(fname):
return np.load(fname)
else:
print('Mean file %s not found. Computing mean...'%fname)
data_iter.reset()
mean_list = [np.zeros(shape[1:], dtype=np.float64) for name, shape in data_iter.provide_data]
name_list = [name for name, shape in data_iter.provide_data]
if label_mean:
mean_list += [np.zeros(shape[1:], dtype=np.float64) for name, shape in data_iter.provide_label]
name_list += [name for name, shape in data_iter.provide_label]
count = 0
last_mean_list = None
for batch in data_iter:
arr_list = batch.data
if label_mean:
arr_list += batch.label
for name, arr, mean in zip(name_list, arr_list, mean_list):
if include is None or name in include:
arr = arr.asnumpy()
mean += arr[:arr.shape[0]-batch.pad].sum(axis=0)
inc = batch.data[0].shape[0]-batch.pad
count += inc
if count/1000 > (count-inc)/1000:
print('processed %d'%count)
if last_mean_list is None:
last_mean_list = [np.zeros_like(mean, dtype=np.float64) for mean in mean_list]
flag = True
for mean, last_mean in zip(mean_list, last_mean_list):
cur_mean = mean/count
if not np.isclose(last_mean, cur_mean).all():
print np.max(np.abs(last_mean-cur_mean))
flag = False
last_mean[:] = cur_mean
break
mean_dict = dict(zip(name_list, [(mean/count).astype(np.float32) for mean in mean_list]))
np.savez(fname, **mean_dict)
if flag:
break
data_iter.reset()
return mean_dict
class Mov3dStack(mx.io.DataIter):
def __init__(self, path, data_shape, batch_size, scale,
mean_file=None, test_mode=False, output_depth=False, data_frames=1, flow_frames=1,
source=None, upsample=1, base_shape=None, stride=1, no_left0=False, right_whiten=False):
self.data_shape = data_shape
self.batch_size = batch_size
self.scale = scale
self.test_mode = test_mode
self.output_depth = output_depth
self.data_frames = data_frames
self.flow_frames = flow_frames
self.upsample = upsample
self.base_shape = base_shape
self.stride = stride
self.no_left0 = no_left0
self.right_whiten = right_whiten
self.fix_p = None
self.env = lmdb.open(path, map_size=1<<40, max_dbs=5, readonly=True, readahead=False)
self.ldb = self.env.open_db('l')
if flow_frames > 0:
self.fdb = self.env.open_db('flow')
if output_depth:
self.ddb = self.env.open_db('depth')
self.margin = (scale[1] - scale[0])/2
else:
self.margin = 0
self.rdb = self.env.open_db('r')
self.cur = 0
with self.env.begin() as txn:
if source:
self.idx = [int(i) for i in txn.get(source).split(',')]
elif self.test_mode:
self.idx = [int(i) for i in txn.get('shuffled_test_idx').split(',')]
else:
self.idx = [int(i) for i in txn.get('shuffled_test_idx').split(',')]
if self.upsample > 1:
self.caps = [cv2.VideoCapture('data/raw/%s.mkv'%p) for p in txn.get('prefix_list').split(',')]
self.provide_data = []
if data_frames > 0:
self.provide_data.append(('left', (batch_size, 3*data_frames, data_shape[1], data_shape[0])))
if flow_frames > 0:
self.provide_data.append(('flow', (batch_size, 2*flow_frames, data_shape[1], data_shape[0])))
if not no_left0:
self.provide_data.append(('left0', (batch_size, 3, data_shape[1]*upsample, data_shape[0]*upsample)))
self.provide_label = [('l1_label', (batch_size, 3, data_shape[1]*upsample, data_shape[0]*upsample))]
if self.output_depth:
self.provide_label = [('softmax_label', (batch_size, data_shape[1]*data_shape[0]))]
self.left_mean = np.zeros((3, data_shape[1], data_shape[0]))
self.right_mean = np.zeros((3, data_shape[1], data_shape[0]))
self.left_mean_nd = mx.nd.array(self.left_mean)
self.left_mean_nd_1 = self.left_mean_nd.reshape((1,)+self.left_mean_nd.shape)
self.right_mean_nd = mx.nd.array(self.right_mean)
if flow_frames > 0:
self.flow_mean = np.zeros((2, data_shape[1], data_shape[0]))
self.flow_mean_nd = mx.nd.array(self.flow_mean)
if mean_file is None:
mean_file = path+'/mean.npz'
mean_dict = load_mean(mean_file, self, label_mean=True)
self.left_mean = mean_dict['left']
self.right_mean = mean_dict['l1_label']
if flow_frames > 0:
self.flow_mean = mean_dict['flow']
self.flow_mean_nd = mx.nd.array(self.flow_mean)
self.left_mean_nd = mx.nd.array(self.left_mean)
self.left_mean_nd_1 = self.left_mean_nd.reshape((1,)+self.left_mean_nd.shape)
self.right_mean_nd = mx.nd.array(self.right_mean)
def reset(self):
logging.info("Mov3dStack.reset at %d"%self.cur)
self.cur = 0
if not self.test_mode:
random.shuffle(self.idx)
def seek(self, n_iter):
self.cur = (n_iter*self.batch_size)%len(self.idx)
def next(self):
from parse import split
ndleft = mx.nd.zeros((self.batch_size*self.data_frames, 3, self.data_shape[1], self.data_shape[0]))
if self.upsample > 1:
left0 = np.zeros((self.batch_size, self.data_shape[1]*self.upsample, self.data_shape[0]*self.upsample, 3), dtype=np.float32)
else:
ndleft0 = mx.nd.zeros((self.batch_size, 3, self.data_shape[1], self.data_shape[0]))
if self.flow_frames > 0:
ndflow = mx.nd.zeros((self.batch_size*self.flow_frames, 2, self.data_shape[1], self.data_shape[0]))
right = np.zeros((self.batch_size, self.data_shape[1]*self.upsample, self.data_shape[0]*self.upsample, 3), dtype=np.float32)
if self.output_depth:
depth = np.zeros((self.batch_size, self.data_shape[1]*self.data_shape[0]), dtype=np.float32)
with self.env.begin() as txn:
for i in range(self.batch_size):
if self.cur >= len(self.idx):
i -= 1
break
idx = self.idx[self.cur]
if self.upsample > 1:
nidx = int(idx)
mov = nidx/1000000
nframe = nidx%1000000
nframe = nframe/10000*3*24*60 + nframe%10000
if self.caps[mov].get(cv2.CAP_PROP_POS_FRAMES) != nframe:
print 'seek', nframe
self.caps[mov].set(cv2.CAP_PROP_POS_FRAMES, nframe)
ret, frame = self.caps[mov].read()
assert ret
margin = (frame.shape[0] - 800)/2
lframe, rframe = split(frame, reshape=self.base_shape, vert=True, clip=(0, margin, 960, margin+800))
p = self.fix_p
if self.output_depth:
sd = txn.get('%09d'%idx, db=self.ddb)
assert sd is not None
_, dimg = mx.recordio.unpack_img(sd, -1)
dimg, p = crop_img(dimg, p, self.data_shape, self.margin, test=self.test_mode)
depth[i] = dimg.flat
if self.upsample > 1:
rimg, p = crop_img(rframe, p, (self.data_shape[0]*self.upsample, self.data_shape[1]*self.upsample), 0, test=self.test_mode, grid=self.upsample)
right[i] = rimg
else:
sr = txn.get('%09d'%idx, db=self.rdb)
assert sr is not None
_, rimg = mx.recordio.unpack_img(sr, 1)
rimg, p = crop_img(rimg, p, self.data_shape, 0, test=self.test_mode)
right[i] = rimg
for j in range(max(1, self.data_frames)):
sl = txn.get('%09d'%(idx+(j-self.data_frames/2)*self.stride), db=self.ldb)
if sl is None:
pass
else:
_, s = mx.recordio.unpack(sl)
mx.nd.imdecode(s, clip_rect=(p[0], p[1], p[0] + self.data_shape[0], p[1] + self.data_shape[1]),
out=ndleft, index=i*self.data_frames+j, channels=3, mean=self.left_mean_nd)
if self.upsample > 1:
limg, p = crop_img(lframe, p, (self.data_shape[0]*self.upsample, self.data_shape[1]*self.upsample), 0, test=self.test_mode, grid=self.upsample)
left0[i] = limg
else:
start = i*max(1, self.data_frames)+max(1, self.data_frames)/2
ndleft0[i:(i+1)] = ndleft[start:(start+1)] + self.left_mean_nd_1
for j in range(self.flow_frames):
sf = txn.get('%09d'%(idx+(j-self.flow_frames/2)*self.stride), db=self.fdb)
if sf is None:
pass
else:
_, s = mx.recordio.unpack(sf)
mx.nd.imdecode(s, clip_rect=(p[0], p[1], p[0] + self.data_shape[0], p[1] + self.data_shape[1]),
out=ndflow, index=i*self.flow_frames+j, channels=2, mean=self.flow_mean_nd)
self.cur += 1
data = []
if self.data_frames > 0:
ndleft = ndleft.reshape((self.batch_size, self.data_frames*3, self.data_shape[1], self.data_shape[0]))
data.append(ndleft)
if self.flow_frames > 0:
ndflow = ndflow.reshape((self.batch_size, self.flow_frames*2, self.data_shape[1], self.data_shape[0]))
data.append(ndflow)
if self.upsample > 1:
data.append(mx.nd.array(left0.transpose((0, 3, 1, 2))))
elif not self.no_left0:
data.append(ndleft0)
right = right.transpose((0, 3, 1, 2))
if self.right_whiten:
right -= self.right_mean
i += 1
pad = self.batch_size - i
if pad:
raise StopIteration
if self.output_depth:
return mx.io.DataBatch(data, [mx.nd.array(right), mx.nd.array(depth)], pad, None)
else:
return mx.io.DataBatch(data, [mx.nd.array(right)], pad, None)
def load_vgg(data_frames=1, flow_frames=1, two_stream=False):
vgg16 = {name: arr for name, arr in mx.nd.load('vgg16-0001.params').items() if name.startswith('arg:conv')}
conv1_weight = vgg16['arg:conv1_1_weight']
new_shape = list(conv1_weight.shape)
new_shape[1] = 3*data_frames + 2*flow_frames
new_conv1_weight = np.zeros(new_shape, dtype=np.float32)
for i in range(data_frames):
if i != data_frames/2:
continue
new_conv1_weight[:, i*3:(i+1)*3, :, :] = conv1_weight.asnumpy()
for i in range(2*flow_frames):
new_conv1_weight[:, data_frames*3+i, :, :] = conv1_weight.asnumpy().mean(axis=1)
vgg16['arg:conv1_1_weight'] = mx.nd.array(new_conv1_weight)
return vgg16
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Put recordio files into lmdb')
parser.add_argument('path', type=str, help='Path to folder containing recordio files')
parser.add_argument('fdb', type=str, help='Path to output lmdb')
args = parser.parse_args()
path = args.path
fdb = args.fdb
suffix_list = ['l', 'r']
# uncomment if working with optical flow or depth data.
# suffix_list = ['depth', 'flow', 'l', 'r']
pset = set()
for fname in os.listdir(path):
if fname.endswith('.rec'):
pset.add(fname.split('_')[0])
print pset
for fname in pset:
addto_db(fdb, path+fname, suffix_list)
# show_db(fdb, suffix_list)
shuffle(fdb)
make_idx(fdb)