diff --git a/CHANGELOG.md b/CHANGELOG.md index 379473a11..f21785a15 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -6,6 +6,7 @@ All notable changes to this project will be documented in this file. ### Added - [#1499](https://github.com/pints-team/pints/pull/1499) Added a log-uniform prior class. +- [#1505](https://github.com/pints-team/pints/pull/1505) Added notes to `ErrorMeasure` and `LogPDF` to say parameters must be real and continuous. ### Changed ### Deprecated ### Removed diff --git a/README.md b/README.md index 69b30e837..65c7c267f 100644 --- a/README.md +++ b/README.md @@ -13,7 +13,6 @@ PINTS (Probabilistic Inference on Noisy Time-Series) is a framework for optimisa PINTS is described in [this publication in JORS](http://doi.org/10.5334/jors.252), and can be cited using the information given in our [CITATION file](https://github.com/pints-team/pints/blob/main/CITATION). More information about PINTS papers can be found in the [papers directory](https://github.com/pints-team/pints/tree/main/papers). - ## Using PINTS PINTS can work with any model that implements the [pints.ForwardModel](http://pints.readthedocs.io/en/latest/core_classes_and_methods.html#forward-model) interface. @@ -35,6 +34,8 @@ _(Left)_ A noisy experimental time series and a computational forward model. _(Right)_ Example code for an optimisation problem. The full code can be [viewed here](https://github.com/pints-team/pints/blob/main/examples/sampling/readme-example.ipynb) but a friendlier, more elaborate, introduction can be found on the [examples page](https://github.com/pints-team/pints/blob/main/examples/README.md). +Beyond time-series models, PINTS can be used on any error function or log-likelihood that takes real-valued, continuous parameters. + A graphical overview of the methods included in PINTS can be [viewed here](https://pints-team.github.io/pints-methods-overview/). ### Examples and documentation diff --git a/pints/_error_measures.py b/pints/_error_measures.py index 6ceae641b..74255e74f 100644 --- a/pints/_error_measures.py +++ b/pints/_error_measures.py @@ -17,7 +17,8 @@ class ErrorMeasure(object): ErrorMeasures are callable objects: If ``e`` is an instance of an :class:`ErrorMeasure` class you can calculate the error by calling ``e(p)`` - where ``p`` is a point in parameter space. + where ``p`` is a point in parameter space. In PINTS, all parameters must be + continuous and real. """ def __call__(self, x): raise NotImplementedError diff --git a/pints/_log_pdfs.py b/pints/_log_pdfs.py index 6457f12d3..5bd13cc99 100644 --- a/pints/_log_pdfs.py +++ b/pints/_log_pdfs.py @@ -16,7 +16,8 @@ class LogPDF(object): All :class:`LogPDF` types are callable: when called with a vector argument ``p`` they return some value ``log(f(p))`` where ``f(p)`` is an unnormalised PDF. The size of the argument ``p`` is given by - :meth:`n_parameters()`. + :meth:`n_parameters()`. In PINTS, all parameters must be continuous and + real. """ def __call__(self, x): raise NotImplementedError