Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixed bug in XNES covariance matrix update. #1517

Merged
merged 8 commits into from
Jan 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,13 +5,14 @@ All notable changes to this project will be documented in this file.
## Unreleased

### Added
- [#1499](https://github.com/pints-team/pints/pull/1499) Added a log-uniform prior class.
- [#1505](https://github.com/pints-team/pints/pull/1505) Added notes to `ErrorMeasure` and `LogPDF` to say parameters must be real and continuous.
- [#1499](https://github.com/pints-team/pints/pull/1499) Added a log-uniform prior class.
### Changed
- [#1503](https://github.com/pints-team/pints/pull/1503) Stopped showing time units in controller logs, because the units change depending on the output type (see #1467).
### Deprecated
### Removed
### Fixed
- [#1517](https://github.com/pints-team/pints/pull/1517) Fixed a major bug in the covariance matrix update for xNES.
- [#1505](https://github.com/pints-team/pints/pull/1505) Fixed issues with toy problems that accept invalid inputs.


Expand Down
12 changes: 8 additions & 4 deletions pints/_optimisers/_xnes.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,8 @@ class XNES(pints.PopulationBasedOptimiser):

.. [2] PyBrain: The Python machine learning library
http://pybrain.org
PyBrain is co-authored by xNES' authors.

"""
def __init__(self, x0, sigma0=None, boundaries=None):
super(XNES, self).__init__(x0, sigma0, boundaries)
Expand All @@ -47,7 +49,7 @@ def __init__(self, x0, sigma0=None, boundaries=None):
self._bounded_ids = None # Indices of those xs

# Normalisation / distribution
self._mu = np.array(self._x0) # Mean
self._mu = pints.vector(x0) # Mean
self._A = None # Covariance

# Best solution seen
Expand Down Expand Up @@ -106,13 +108,13 @@ def _initialise(self):
d = self._n_parameters
n = self._population_size

# Learning rates
# Learning rates, see Table 1 in [1]
# TODO Allow changing before run() with method call
self._eta_mu = 1
# TODO Allow changing before run() with method call
self._eta_A = 0.6 * (3 + np.log(d)) * d ** -1.5

# Pre-calculated utilities
# Pre-calculated utilities, see Table 1 in [1]
self._us = np.maximum(0, np.log(n / 2 + 1) - np.log(1 + np.arange(n)))
self._us /= np.sum(self._us)
self._us -= 1 / n
Expand Down Expand Up @@ -162,10 +164,12 @@ def tell(self, fx):
self._mu += self._eta_mu * np.dot(self._A, Gd)

# Update root of covariance matrix
# Note that this is equation 11 (for the eta-sigma=eta-B case), not the
# more general equations 9&10 version given in Algorithm 1
Gm = np.dot(
np.array([np.outer(z, z).T - self._I for z in self._zs]).T,
self._us)
self._A *= scipy.linalg.expm(np.dot(0.5 * self._eta_A, Gm))
self._A = np.dot(self._A, scipy.linalg.expm(0.5 * self._eta_A * Gm))

# Update f_guessed on the assumption that the lowest value in our
# sample approximates f(mu)
Expand Down
17 changes: 9 additions & 8 deletions pints/tests/test_opt_controller.py
Original file line number Diff line number Diff line change
Expand Up @@ -233,6 +233,7 @@ def test_stopping_max_iterations(self):
def test_logging(self):

# Test with logpdf
np.random.seed(1)
r = pints.toy.TwistedGaussianLogPDF(2, 0.01)
x = np.array([0, 1.01])
b = pints.RectangularBoundaries([-0.01, 0.95], [0.01, 1.05])
Expand All @@ -255,17 +256,17 @@ def test_logging(self):
self.assertEqual(lines[5][:-3],
'0 3 -4.140462 -4.140462 0:0')
self.assertEqual(lines[6][:-3],
'1 6 -4.140462 -4.140465 0:0')
'1 6 -4.140462 -4.140482 0:0')
self.assertEqual(lines[7][:-3],
'2 11 -4.140462 -4.140462 0:0')
'2 9 -4.140462 -4.140465 0:0')
self.assertEqual(lines[8][:-3],
'3 16 -4.140462 -4.140466 0:0')
'3 14 -4.140462 -4.140462 0:0')
self.assertEqual(lines[9][:-3],
'6 33 -4.140462 -4.140462 0:0')
'6 30 -4.140462 -4.140462 0:0')
self.assertEqual(lines[10][:-3],
'9 51 -4.140462 -4.140462 0:0')
'9 47 -4.140462 -4.140463 0:0')
self.assertEqual(lines[11][:-3],
'10 51 -4.140462 -4.140462 0:0')
'10 47 -4.140462 -4.140463 0:0')
self.assertEqual(
lines[12], 'Halting: Maximum number of iterations (10) reached.')

Expand Down Expand Up @@ -448,8 +449,8 @@ def test_post_run_statistics(self):
opt.run()
t_upper = t.time()

self.assertEqual(opt.iterations(), 84)
self.assertEqual(opt.evaluations(), 495)
self.assertEqual(opt.iterations(), 125)
self.assertEqual(opt.evaluations(), 734)

# Time after run is greater than zero
self.assertIsInstance(opt.time(), float)
Expand Down
Loading