-
Notifications
You must be signed in to change notification settings - Fork 1
/
params.yaml
67 lines (53 loc) · 1.39 KB
/
params.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Configuration file for DVC (Data Version Control)
# This YAML file defines the parameters used in the DVC pipeline for training a machine learning model.
# It includes data paths, training configurations, and model settings.
# Data paths for training and testing
data:
# Path to the training data in Parquet format
train: data/train.parquet
# Path to the testing data in Parquet format
test: data/test.parquet
# Training configuration
train:
# Number of hyperparameter optimization trials
n_trials: 40
# Hyperparameter ranges for Optuna
hyperparams:
# Maximim n-grams for the first TF-IDF component (word)
max_ngram_word:
low: 1
high: 3
# Maximim n-grams for the second TF-IDF component (char)
max_ngram_char:
low: 1
high: 5
# Loweracase option for TF-IDF
lowercase:
- True
- False
# Use IDF
use_idf:
- True
- False
# Regularization parameter C for Linear SVC
C:
low: 1e-7
high: 10
# Tolerance for stopping criteria
tol:
low: 1e-5
high: 1e-1
# Loss function
loss:
- hinge
- squared_hinge
# Method used for calibration
calibration:
- isotonic
- sigmoid
# Model paths
model:
# Path to save the model in pickle format
pickle: live/model/model.pkl
# Path to save the model in ONNX format
onnx: live/model/model.onnx