-
Notifications
You must be signed in to change notification settings - Fork 141
/
04-numbers-games.ss
executable file
·367 lines (315 loc) · 9.7 KB
/
04-numbers-games.ss
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
;
; Chapter 4 of The Little Schemer:
; Numbers Games
;
; Code examples assemled by Peteris Krumins (peter@catonmat.net).
; His blog is at http://www.catonmat.net -- good coders code, great reuse.
;
; Get yourself this wonderful book at Amazon: http://bit.ly/4GjWdP
;
; Assume add1 is a primitive
;
(define add1
(lambda (n) (+ n 1)))
; Example of add1
;
(add1 67) ; 68
; Assume sub1 is a primitive
;
(define sub1
(lambda (n) (- n 1)))
; Example of sub1
;
(sub1 5) ; 5
; Example of zero?
;
(zero? 0) ; true
(zero? 1492) ; false
; The o+ function adds two numbers
;
(define o+
(lambda (n m)
(cond
((zero? m) n)
(else (add1 (o+ n (sub1 m)))))))
; Example of o+
;
(o+ 46 12) ; 58
; The o- function subtracts one number from the other
;
(define o-
(lambda (n m)
(cond
((zero? m) n)
(else (sub1 (o- n (sub1 m)))))))
; Example of o-
;
(o- 14 3) ; 11
(o- 17 9) ; 8
; Examples of tups (tup is short for tuple)
;
'(2 111 3 79 47 6)
'(8 55 5 555)
'()
; Examples of not-tups
;
'(1 2 8 apple 4 3) ; not-a-tup because apple is not a number
'(3 (7 4) 13 9) ; not-a-tup because (7 4) is a list of numbers, not a number
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; The first commandment (first revision) ;
; ;
; When recurring on a list of atoms, lat, ask two questions about it: ;
; (null? lat) and else. ;
; When recurring on a number, n, ask two questions about it: (zero? n) and ;
; else. ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; The addtup function adds all numbers in a tup
;
(define addtup
(lambda (tup)
(cond
((null? tup) 0)
(else (o+ (car tup) (addtup (cdr tup)))))))
; Examples of addtup
;
(addtup '(3 5 2 8)) ; 18
(addtup '(15 6 7 12 3)) ; 43
; The o* function multiplies two numbers
;
(define o*
(lambda (n m)
(cond
((zero? m) 0)
(else (o+ n (o* n (sub1 m)))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; The fourth commandment (first revision) ;
; ;
; Always change at least one argument while recurring. It must be changed to ;
; be closer to termination. The changing argument must be tested in the ;
; termination condition: ;
; when using cdr, test the termination with null? and ;
; when using sub1, test termination with zero?. ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Examples of o*
;
(o* 5 3) ; 15
(o* 13 4) ; 52
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; The fifth commandment ;
; ;
; When building a value with o+, always use 0 for the value of the ;
; terminating line, for adding 0 does not change the value of an addition. ;
; ;
; When building a value with o*, always use 1 for the value of the ;
; terminating line, for multiplying by 1 does not change the value of a ;
; multiplication. ;
; ;
; When building a value with cons, always consider () for the value of the ;
; terminating line. ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; The tup+ function adds two tups
;
(define tup+
(lambda (tup1 tup2)
(cond
((null? tup1) tup2)
((null? tup2) tup1)
(else
(cons (o+ (car tup1) (car tup2))
(tup+ (cdr tup1) (cdr tup2)))))))
; Examples of tup+
;
(tup+ '(3 6 9 11 4) '(8 5 2 0 7)) ; '(11 11 11 11 11)
(tup+ '(3 7) '(4 6 8 1)) ; '(7 13 8 1)
; The o> function compares n with m and returns true if n>m
;
(define o>
(lambda (n m)
(cond
((zero? n) #f)
((zero? m) #t)
(else
(o> (sub1 n) (sub1 m))))))
; Examples of o>
;
(o> 12 133) ; #f (false)
(o> 120 11) ; #t (true)
(o> 6 6) ; #f
; The o< function compares n with m and returns true if n<m
;
(define o<
(lambda (n m)
(cond
((zero? m) #f)
((zero? n) #t)
(else
(o< (sub1 n) (sub1 m))))))
; Examples of o<
;
(o< 4 6) ; #t
(o< 8 3) ; #f
(o< 6 6) ; #f
; The o= function compares n with m and returns true if n=m
;
(define o=
(lambda (n m)
(cond
((o> n m) #f)
((o< n m) #f)
(else #t))))
; Examples of o=
;
(o= 5 5) ; #t
(o= 1 2) ; #f
; The o^ function computes n^m
;
(define o^
(lambda (n m)
(cond
((zero? m) 1)
(else (o* n (o^ n (sub1 m)))))))
; Examples of o^
;
(o^ 1 1) ; 1
(o^ 2 3) ; 8
(o^ 5 3) ; 125
; The o/ function computes the integer part of n/m
;
(define o/
(lambda (n m)
(cond
((o< n m) 0)
(else (add1 (o/ (o- n m) m))))))
; Example of o/
;
(o/ 15 4) ; 3
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; Wouldn't a '(ham and cheese on rye) be good right now? ;
; ;
; Don't forget the 'mustard! ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; The olength function finds the length of a lat
;
(define olength
(lambda (lat)
(cond
((null? lat) 0)
(else (add1 (olength (cdr lat)))))))
; Examples of length
;
(olength '(hotdogs with mustard sauerkraut and pickles)) ; 6
(olength '(ham and cheese on rye)) ; 5
; The pick function returns the n-th element in a lat
;
(define pick
(lambda (n lat)
(cond
((zero? (sub1 n)) (car lat))
(else
(pick (sub1 n) (cdr lat))))))
; Example of pick
;
(pick 4 '(lasagna spaghetti ravioli macaroni meatball)) ; 'macaroni
; The rempick function removes the n-th element and returns the new lat
;
(define rempick
(lambda (n lat)
(cond
((zero? (sub1 n)) (cdr lat))
(else
(cons (car lat) (rempick (sub1 n) (cdr lat)))))))
; Example of rempick
;
(rempick 3 '(hotdogs with hot mustard)) ; '(hotdogs with mustard)
; The no-nums function returns a new lat with all numbers removed
;
(define no-nums
(lambda (lat)
(cond
((null? lat) '())
((number? (car lat)) (no-nums (cdr lat)))
(else
(cons (car lat) (no-nums (cdr lat)))))))
; Example of no-nums
;
(no-nums '(5 pears 6 prunes 9 dates)) ; '(pears prunes dates)
; The all-nums does the opposite of no-nums - returns a new lat with
; only numbers
;
(define all-nums
(lambda (lat)
(cond
((null? lat) '())
((number? (car lat)) (cons (car lat) (all-nums (cdr lat))))
(else
(all-nums (cdr lat))))))
; Example of all-nums
;
(all-nums '(5 pears 6 prunes 9 dates)) ; '(5 6 9)
; The eqan? function determines whether two arguments are te same
; It uses eq? for atoms and = for numbers
;
(define eqan?
(lambda (a1 a2)
(cond
((and (number? a1) (number? a2)) (= a1 a2))
((or (number? a1) (number? a2)) #f)
(else
(eq? a1 a2)))))
; Examples of eqan?
;
(eqan? 3 3) ; #t
(eqan? 3 4) ; #f
(eqan? 'a 'a) ; #t
(eqan? 'a 'b) ; #f
; The occur function counts the number of times an atom appears
; in a list
;
(define occur
(lambda (a lat)
(cond
((null? lat) 0)
((eq? (car lat) a)
(add1 (occur a (cdr lat))))
(else
(occur a (cdr lat))))))
; Example of occur
;
(occur 'x '(a b x x c d x)) ; 3
(occur 'x '()) ; 0
; The one? function is true when n=1
;
(define one?
(lambda (n) (= n 1)))
; Example of one?
;
(one? 5) ; #f
(one? 1) ; #t
; We can rewrite rempick using one?
;
(define rempick-one
(lambda (n lat)
(cond
((one? n) (cdr lat))
(else
(cons (car lat) (rempick-one (sub1 n) (cdr lat)))))))
; Example of rempick-one
;
(rempick-one 4 '(hotdogs with hot mustard)) ; '(hotdogs with mustard)
;
; Go get yourself this wonderful book and have fun with these examples!
;
; Shortened URL to the book at Amazon.com: http://bit.ly/4GjWdP
;
; Sincerely,
; Peteris Krumins
; http://www.catonmat.net
;