-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualize.py
64 lines (58 loc) · 3.08 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
os.chdir("environment")
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
def load_graph(model_file):
graph = tf.Graph()
graph_def = tf.GraphDef()
with open(model_file, "rb") as f:
graph_def.ParseFromString(f.read())
with graph.as_default():
tf.import_graph_def(graph_def)
return graph
def read_tensor_from_image_file(file_name, input_height=299, input_width=299,input_mean=0, input_std=255):
input_name = "file_reader"
file_reader = tf.read_file(file_name, input_name)
if file_name.endswith(".png"):
image_reader = tf.image.decode_png(file_reader, channels = 3, name='png_reader')
elif file_name.endswith(".gif"):
image_reader = tf.squeeze(tf.image.decode_gif(file_reader, name='gif_reader'))
elif file_name.endswith(".bmp"):
image_reader = tf.image.decode_bmp(file_reader, name='bmp_reader')
else:
image_reader = tf.image.decode_jpeg(file_reader, channels = 3, name='jpeg_reader')
float_caster = tf.cast(image_reader, tf.float32)
dims_expander = tf.expand_dims(float_caster, 0)
resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
sess = tf.Session()
result = sess.run(normalized)
return result
model_file = "models/102.pb"
img_name = ["datasets/datasets102-202-302/dataset102/Antarctissa denticulata/Antarctissa denticulata 689B-3-3,116 Axioskop 40X jr-3a.jpg",
"datasets/datasets102-202-302/dataset102/Antarctissa denticulata/Antarctissa denticulata 689B-3-3,116 Axioskop 40X jr-3b.jpg",
"datasets/datasets102-202-302/dataset102/Antarctissa cylindrica/Antarctissa cylindrica 689B-3-3,116 Axioskop 40X jr-3a.jpg",
"datasets/datasets102-202-302/dataset102/Antarctissa cylindrica/Antarctissa cylindrica 689B-3-3,116 Axioskop 40X jr-3b.jpg",
"datasets/datasets102-202-302/dataset102/Cycladophora golli/Cycladophora golli _278-20-1,77 OlyBH2 30X dbl 5.jpg",
"datasets/datasets102-202-302/dataset102/Cycladophora spongothorax /Cycladophora spongothorax 689B-4-4,116 Olympus BH-2 30X dbl 1a.jpg",
"datasets/datasets102-202-302/dataset102/Cycladophora spongothorax /Cycladophora spongothorax 689B-4-4,116 Olympus BH-2 30X dbl 14a.jpg"]
graph = load_graph(model_file)
input_height = 224
input_width = 224
input_mean = 128
input_std = 128
conv_layers = [k for k in graph.get_operations() if k.type=="Conv2D"]
#conv_layers = [k for k in graph.get_operations() if k.type=="Relu6"]
for k in xrange(len(img_name)):
a=[]
img = read_tensor_from_image_file(img_name[k],input_height=input_height,input_width=input_width,input_mean=input_mean,input_std=input_std)
sess = tf.Session(graph=graph)
for i in xrange(len(conv_layers)):
a.append(sess.run(conv_layers[i].outputs[0],{graph.get_operation_by_name("import/input").outputs[0]: img}))
for i in xrange(15):
for j in xrange(32):
plt.imshow(a[i][0,0:,0:,j])
plt.gray()
#plt.show()
plt.savefig("visualization/%s_conv%i_layer%i.png"%(os.path.basename(img_name[k]),i,j))