This repository is for testing and comparing different approaches to social distancing.
Clone repository with submodules (git clone --recurse-submodules ...
).
- Cuda 10.1
- gcc min 7
Install the submodules in editable mode
conda create -n socdist-env python=3.7
conda activate socdist-env
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch
pip install -e monoculardepth/monodepth2
pip install -e monoculardepth/mannequinchallenge
pip install -e object-detection-segmentation/yolact
pip install -e git+https://github.com/CharlesShang/DCNv2@master#egg=dcnv2
pip install -e tracking_wo_bnw
pip install -e human_depth_dataset
pip install -r requirements.txt
Retrieve checkpoint for mannequinchallenge
cd monoculardepth/mannequinchallenge && ./fetch_checkpoints.sh && cd ../..
Download https://vision.in.tum.de/webshare/u/meinhard/tracking_wo_bnw-output_v2.zip and unzip into tracking_wo_bnw/output
.
python run.py --video_source samples/mot16.webm --depth_merger median
uvicorn rest:app --reload
curl --location --request POST 'localhost:8000/predict' --form 'file=@samples/people_002.png'