In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Llama2 models. For illustration purposes, we utilize the meta-llama/Llama-2-7b-chat-hf and meta-llama/Llama-2-13b-chat-hf as reference Llama2 models.
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to here for more information.
In the example generate.py, we show a basic use case for a Llama2 model to predict the next N tokens using generate()
API, with BigDL-LLM INT4 optimizations.
We suggest using conda to manage environment:
conda create -n llm python=3.9
conda activate llm
pip install bigdl-llm[all] # install bigdl-llm with 'all' option
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH
: argument defining the huggingface repo id for the Llama2 model (e.g.meta-llama/Llama-2-7b-chat-hf
andmeta-llama/Llama-2-13b-chat-hf
) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'meta-llama/Llama-2-7b-chat-hf'
.--prompt PROMPT
: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be'What is AI?'
.--n-predict N_PREDICT
: argument defining the max number of tokens to predict. It is default to be32
.
Note: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a XB model saved in 16-bit will requires approximately 2X GB of memory for loading, and ~0.5X GB memory for further inference.
Please select the appropriate size of the Llama2 model based on the capabilities of your machine.
On client Windows machine, it is recommended to run directly with full utilization of all cores:
python ./generate.py
For optimal performance on server, it is recommended to set several environment variables (refer to here for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
# set BigDL-LLM env variables
source bigdl-llm-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py
Inference time: xxxx s
-------------------- Prompt --------------------
### HUMAN:
What is AI?
### RESPONSE:
-------------------- Output --------------------
### HUMAN:
What is AI?
### RESPONSE:
AI is a term used to describe the development of computer systems that can perform tasks that typically require human intelligence, such as understanding natural language, recognizing images
Inference time: xxxx s
-------------------- Prompt --------------------
### HUMAN:
What is AI?
### RESPONSE:
-------------------- Output --------------------
### HUMAN:
What is AI?
### RESPONSE:
AI, or artificial intelligence, refers to the ability of machines to perform tasks that would typically require human intelligence, such as learning, problem-solving,