forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate.py
337 lines (302 loc) · 14.2 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/haotian-liu/LLaVA/blob/v1.1.1/llava/model/builder.py
# and
# https://github.com/haotian-liu/LLaVA/blob/v1.1.1/llava/serve/cli.py
#
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import torch
import time
from transformers import AutoModelForCausalLM
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
from transformers import AutoTokenizer
from llava.constants import (
DEFAULT_IMAGE_PATCH_TOKEN,
IMAGE_TOKEN_INDEX,
DEFAULT_IMAGE_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IM_END_TOKEN
)
from llava.conversation import conv_templates, SeparatorStyle
from llava.utils import disable_torch_init
from llava.mm_utils import (
process_images,
tokenizer_image_token,
get_model_name_from_path,
KeywordsStoppingCriteria
)
from bigdl.llm import optimize_model
# Load the pretrained model.
# Adapted from llava.model.builder.load_pretrained_model.
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False,
device_map="auto", device="cpu"):
kwargs = {"device_map": device_map}
kwargs['torch_dtype'] = torch.float32
if 'llava' in model_name.lower():
# Load LLaVA model
if 'lora' in model_name.lower() and model_base is None:
warnings.warn('There is `lora` in model name but no `model_base` is provided.'
'If you are loading a LoRA model, please provide the `model_base` argument'
'. Detailed instruction:'
'https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
if 'lora' in model_name.lower() and model_base is not None:
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(
model_base, use_fast=False)
print('Loading LLaVA from base model...')
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True,
config=lora_cfg_pretrained, **kwargs)
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
if model.lm_head.weight.shape[0] != token_num:
model.lm_head.weight = torch.nn.Parameter(torch.empty(
token_num, tokem_dim, device=model.device, dtype=model.dtype))
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(
token_num, tokem_dim, device=model.device, dtype=model.dtype))
print('Loading additional LLaVA weights...')
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
non_lora_trainables = torch.load(os.path.join(model_path,
'non_lora_trainables.bin'),
map_location='cpu')
else:
# this is probably from HF Hub
from huggingface_hub import hf_hub_download
def load_from_hf(repo_id, filename, subfolder=None):
cache_file = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder)
return torch.load(cache_file, map_location='cpu')
non_lora_trainables = load_from_hf(
model_path, 'non_lora_trainables.bin')
non_lora_trainables = {(k[11:] if k.startswith(
'base_model.') else k): v for k, v in non_lora_trainables.items()}
if any(k.startswith('model.model.') for k in non_lora_trainables):
non_lora_trainables = {(k[6:] if k.startswith(
'model.') else k): v for k, v in non_lora_trainables.items()}
model.load_state_dict(non_lora_trainables, strict=False)
from peft import PeftModel
print('Loading LoRA weights...')
model = PeftModel.from_pretrained(model, model_path)
print('Merging LoRA weights...')
model = model.merge_and_unload()
print('Model is loaded...')
elif model_base is not None:
# this may be mm projector only
print('Loading LLaVA from base model...')
if 'mpt' in model_name.lower():
if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')):
shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(
model_path, 'configuration_mpt.py'))
tokenizer = AutoTokenizer.from_pretrained(
model_base, use_fast=True)
cfg_pretrained = AutoConfig.from_pretrained(
model_path, trust_remote_code=True)
model = LlavaMPTForCausalLM.from_pretrained(
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(
model_base, use_fast=False)
cfg_pretrained = AutoConfig.from_pretrained(model_path)
model = LlavaLlamaForCausalLM.from_pretrained(
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
mm_projector_weights = torch.load(os.path.join(
model_path, 'mm_projector.bin'), map_location='cpu')
mm_projector_weights = {k: v.to(torch.float32)
for k, v in mm_projector_weights.items()}
model.load_state_dict(mm_projector_weights, strict=False)
else:
if 'mpt' in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=True)
model = LlavaMPTForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=False)
model = LlavaLlamaForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **kwargs)
else:
# Load language model
if model_base is not None:
# PEFT model
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained(
model_base, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_base, torch_dtype=torch.float32, low_cpu_mem_usage=True, device_map="auto")
print(f"Loading LoRA weights from {model_path}")
model = PeftModel.from_pretrained(model, model_path)
print(f"Merging weights")
model = model.merge_and_unload()
print('Convert to FP32...')
model.to(torch.float32)
else:
use_fast = False
if 'mpt' in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **kwargs)
image_processor = None
if 'llava' in model_name.lower():
mm_use_im_start_end = getattr(
model.config, "mm_use_im_start_end", False)
mm_use_im_patch_token = getattr(
model.config, "mm_use_im_patch_token", True)
if mm_use_im_patch_token:
tokenizer.add_tokens(
[DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model()
vision_tower.to(device=device, dtype=torch.float32)
image_processor = vision_tower.image_processor
if hasattr(model.config, "max_sequence_length"):
context_len = model.config.max_sequence_length
else:
context_len = 2048
return tokenizer, model, image_processor, context_len
# Initialize conversation from templates and get conversation roles.
def get_conv_and_role(model_name):
if 'llama-2' in model_name.lower():
conv_mode = "llava_llama_2"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt"
else:
conv_mode = "llava_v0"
conv = conv_templates[conv_mode].copy()
if "mpt" in model_name.lower():
roles = ('user', 'assistant')
else:
roles = conv.roles
return conv, roles
# Load image from a url or path.
def load_image(image_file):
import requests
from PIL import Image
from io import BytesIO
if image_file.startswith('http://') or image_file.startswith('https://'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
def generate_image_tensor(image_file):
image = load_image(image_file)
model_cfg = {"image_aspect_ratio": 'pad'}
image_tensor = process_images([image], image_processor, model_cfg)
return image_tensor
# Generate input prompt with user input.
def get_prompt(mm_use_im_start_end, first_round, conv, user_input):
if first_round:
# first message
if mm_use_im_start_end:
user_input = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + \
DEFAULT_IM_END_TOKEN + '\n' + user_input
else:
user_input = DEFAULT_IMAGE_TOKEN + '\n' + user_input
conv.append_message(conv.roles[0], user_input)
else:
# later messages
conv.append_message(conv.roles[0], user_input)
conv.append_message(conv.roles[1], None)
return conv.get_prompt()
def get_stopping_criteria(conv, tokenizer, input_ids):
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
return stopping_criteria
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Predict Tokens using `generate()` API for LLaVA model')
parser.add_argument('--repo-id-or-model-path', type=str, default="liuhaotian/llava-v1.5-13b",
help='The huggingface repo id for the LLaVA model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--image-path-or-url', type=str,
required=True, help='Image path or url for the input image that the chat will focus on')
parser.add_argument('--n-predict', type=int, default=512,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
model_name = get_model_name_from_path(model_path)
# Disable the redundant torch default initialization to accelerate model creation.
disable_torch_init()
# Load model
tokenizer, model, image_processor, _ = load_pretrained_model(model_path=model_path,
model_base=None,
model_name=model_name)
# With only one line to enable BigDL-LLM optimization on model
model = optimize_model(model)
# Generate image tensor
image_tensor = generate_image_tensor(args.image_path_or_url)
# Get conversation template and roles
conv, roles = get_conv_and_role(model_name)
first_round = True
while True:
try:
user_input = input(f"{roles[0]}: ")
except EOFError:
user_input = ""
if not user_input:
print("exit...")
break
prompt = get_prompt(model.config.mm_use_im_start_end, first_round, conv, user_input)
first_round = False
input_ids = tokenizer_image_token(
prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0)
stopping_criteria = get_stopping_criteria(conv, tokenizer, input_ids)
# Generate predicted tokens
with torch.inference_mode():
st = time.time()
output_ids = model.generate(
input_ids,
images=image_tensor,
do_sample=True,
max_new_tokens=args.n_predict,
use_cache=True,
stopping_criteria=[stopping_criteria])
end = time.time()
#print(f'Inference time: {end-st} s')
outputs = tokenizer.decode(
output_ids[0, input_ids.shape[1]:], skip_special_tokens=True).strip()
conv.messages[-1][-1] = outputs
print(f"{roles[1]}: ", end="")
print(outputs)