In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Aquila2 models on Intel GPUs. For illustration purposes, we utilize the BAAI/AquilaChat2-7B as a reference Aquila2 model.
Note: If you want to download the Hugging Face Transformers model, please refer to here.
BigDL-LLM optimizes the Transformers model in INT4 precision at runtime, and thus no explicit conversion is needed.
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to here for more information.
In the example generate.py, we show a basic use case for a Aquila2 model to predict the next N tokens using generate()
API, with BigDL-LLM INT4 optimizations.
We suggest using conda to manage environment:
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
We suggest using conda to manage environment:
conda create -n llm python=3.9 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
source /opt/intel/oneapi/setvars.sh
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
Note: Please make sure you are using CMD (Anaconda Prompt if using conda) to run the command as PowerShell is not supported.
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export ENABLE_SDP_FUSION=1
Note: Please note that
libtcmalloc.so
can be installed byconda install -c conda-forge -y gperftools=2.10
.
For Intel iGPU
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
For Intel Arc™ A300-Series or Pro A60
set SYCL_CACHE_PERSISTENT=1
For other Intel dGPU Series
There is no need to set further environment variables.
Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
Arguments Info In the example, several arguments can be passed to satisfy your requirements:
--repo-id-or-model-path
: str, argument defining the huggingface repo id for the Aquila2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'BAAI/AquilaChat2-7B'
.--prompt
: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be'AI是什么?'
.--n-predict
: int, argument defining the max number of tokens to predict. It is default to be32
.
Inference time: xxxx s
-------------------- Prompt --------------------
<|startofpiece|>AI是什么?<|endofpiece|>
-------------------- Output --------------------
<|startofpiece|>AI是什么?<|endofpiece|>人工智能(Artificial Intelligence,简称AI)是计算机科学中一个极为重要的研究领域,旨在让计算机模仿人类的智能,包括学习、推理、识别物体