This project aims to scrape Twitter data using the snscrape library, store it in MongoDB, and display the scraped data in a GUI built with Streamlit. The user can enter a keyword or hashtag to search, select a date range, and limit the number of tweets to scrape. The scraped data is displayed in the GUI and can be uploaded to the database, downloaded as a CSV or JSON file.
A demo video of the working model is available on Youtube and Linkedin.
- Step 0
pip install snscrape pandas streamlit datetime pymongo
- Step 1
Importing needed libraries
from datetime import date
import pandas as pd
import snscrape.modules.twitter as sntwitter
import streamlit as st
import pymongo
- Step 2
Getting input from user on streamlit sidebar
# Keyword/hastags, tweet count and date range(start and end)
Hashtag = st.sidebar.text_input("Enter the Hashtag or Keyword of Tweets : ")
No_of_tweets = st.sidebar.number_input("Number of Tweets needed : ", min_value= 1, max_value= 1000, step= 1)
st.sidebar.write(":green[Select the Date range]")
start_date = st.sidebar.date_input("Start Date (YYYY-MM-DD) : ")
end_date = st.sidebar.date_input("End Date (YYYY-MM-DD) : ")
Scraped_date = str(date.today())
- Step 3
Using snscrape and pandas,Tweets get scraped,converted into Dataframe and displayed in tabular format
Total_tweets = []
if Hashtag:
# Using for loop, TwitterSearchScraper and enumerate function to scrape data and append tweets to list
for a,tweet in enumerate(sntwitter.TwitterSearchScraper(f"{Hashtag} since:{start_date} until:{end_date}").get_items()):
if a >= No_of_tweets:
break
Total_tweets.append([tweet.id,tweet.user.username,
tweet.lang,tweet.date,
tweet.url,tweet.replyCount,tweet.retweetCount,
tweet.likeCount,tweet.rawContent,
tweet.source
])
# DataFrame from Total_tweets
def data_frame(t_data):
return pd.DataFrame(t_data, columns= ['user_id','user_name','language','datetime',
'url', 'reply_count','retweet_count', 'like_count',
'tweet_content','source'])
# DataFrame to JSON file
def convert_to_json(t_j):
return t_j.to_json(orient='index')
# DataFrame to CSV file
def convert_to_csv(t_c):
return t_c.to_csv().encode('utf-8')
# Creating objects for dataframe and file conversion
df = data_frame(Total_tweets)
csv = convert_to_csv(df)
json = convert_to_json(df)
- Step 4
Pymongo is used to connect to Mongodb Atlas
Note: Change the API into your Mongodb atlas API, to avoid access restriction error
# Using MongoDB Atlas as a new database to store date(scraped tweets) in collections(scraped_tweets)
client = pymongo.MongoClient("mongodb+srv://pnrajk1:Nataraj19961@cluster0.rlu7bvd.mongodb.net/?retryWrites=true&w=majority")
db = client.twitterscraping
col = db.scraped_tweets
scr_data = {"Scraped_word" : Hashtag,
"Scraped_date" : Scraped_date,
"Scraped_tweets" : df.to_dict('records')
}
- Step 5
Streamlit is used to create GUI Buttons for Uploading and Downloading scraped tweets
if df.empty:
st.subheader(":point_left:.Scraped tweets will visible after entering hashtag or keywords")
else:
# Automatically load the DataFrame in Tabular Format
st.success(f"**:green[{Hashtag} tweets]:thumbsup:**")
st.write(df)
st.write("**:green[Choose Any options from below]**")
# Button in horizontal order
b2 , b3, b4 = st.columns([43,40,30])
# GUI-Button2 - To upload the data to mongoDB database
if b2.button("Upload to MongoDB"):
try:
col.delete_many({})
col.insert_one(scr_data)
b2.success('Upload to MongoDB Successfully:thumbsup:')
except:
b2.error('Please try again after Submiting the Hashtag or keyword')
# GUI-Button3 - To download data as CSV
if b3.download_button(label= "Download CSV",
data= csv,
file_name= f'{Hashtag}_tweets.csv',
mime= 'text/csv'
):
b3.success('CSV Downloaded Successfully:thumbsup:')
# GUI-Button4 - To download data as JSON
if b4.download_button(label= "Download JSON",
data= json,
file_name= f'{Hashtag}_tweets.json',
mime= 'text/csv'
):
b4.success('JSON Downloaded Successfully:thumbsup:')
streamlit run tweets.py
- Expand the project to scrape data from other social media platforms
- Add authentication to the GUI to ensure data privacy
- List of available Hashtags present in database