Skip to content

Latest commit

 

History

History
146 lines (124 loc) · 5.75 KB

readme.md

File metadata and controls

146 lines (124 loc) · 5.75 KB

Twitter Scraping

This project aims to scrape Twitter data using the snscrape library, store it in MongoDB, and display the scraped data in a GUI built with Streamlit. The user can enter a keyword or hashtag to search, select a date range, and limit the number of tweets to scrape. The scraped data is displayed in the GUI and can be uploaded to the database, downloaded as a CSV or JSON file.

Requirments for this project

Demo

A demo video of the working model is available on Youtube and Linkedin.


Click to watch the video

Workflow

  • Step 0 pip install snscrape pandas streamlit datetime pymongo
  • Step 1 Importing needed libraries
from datetime import date
import pandas as pd
import snscrape.modules.twitter as sntwitter
import streamlit as st
import pymongo
  • Step 2 Getting input from user on streamlit sidebar
# Keyword/hastags, tweet count and date range(start and end)
Hashtag = st.sidebar.text_input("Enter the Hashtag or Keyword of Tweets : ")
No_of_tweets = st.sidebar.number_input("Number of Tweets needed : ", min_value= 1, max_value= 1000, step= 1)
st.sidebar.write(":green[Select the Date range]")
start_date = st.sidebar.date_input("Start Date (YYYY-MM-DD) : ")
end_date = st.sidebar.date_input("End Date (YYYY-MM-DD) : ")
Scraped_date = str(date.today())
  • Step 3 Using snscrape and pandas,Tweets get scraped,converted into Dataframe and displayed in tabular format
Total_tweets = []

if Hashtag:
    # Using for loop, TwitterSearchScraper and enumerate function to scrape data and append tweets to list
    for a,tweet in enumerate(sntwitter.TwitterSearchScraper(f"{Hashtag} since:{start_date} until:{end_date}").get_items()):
        if a >= No_of_tweets:
            break
        Total_tweets.append([tweet.id,tweet.user.username,
                            tweet.lang,tweet.date,
                            tweet.url,tweet.replyCount,tweet.retweetCount,
                            tweet.likeCount,tweet.rawContent,
                            tweet.source
                           ])

# DataFrame from Total_tweets
def data_frame(t_data):
    return pd.DataFrame(t_data, columns= ['user_id','user_name','language','datetime',
                                          'url', 'reply_count','retweet_count', 'like_count', 
                                          'tweet_content','source'])

# DataFrame to JSON file
def convert_to_json(t_j):
    return t_j.to_json(orient='index')

# DataFrame to CSV file
def convert_to_csv(t_c):
    return t_c.to_csv().encode('utf-8')


# Creating objects for dataframe and file conversion
df = data_frame(Total_tweets)
csv = convert_to_csv(df)
json = convert_to_json(df)
  • Step 4 Pymongo is used to connect to Mongodb Atlas
    • Note: Change the API into your Mongodb atlas API, to avoid access restriction error
# Using MongoDB Atlas as a new database to store date(scraped tweets) in collections(scraped_tweets)
client = pymongo.MongoClient("mongodb+srv://pnrajk1:Nataraj19961@cluster0.rlu7bvd.mongodb.net/?retryWrites=true&w=majority")
db = client.twitterscraping
col = db.scraped_tweets
scr_data = {"Scraped_word" : Hashtag,
            "Scraped_date" : Scraped_date,
            "Scraped_tweets" : df.to_dict('records')
           }
  • Step 5 Streamlit is used to create GUI Buttons for Uploading and Downloading scraped tweets
if df.empty:
    st.subheader(":point_left:.Scraped tweets will visible after entering hashtag or keywords")

else:
    # Automatically load the DataFrame in Tabular Format
    st.success(f"**:green[{Hashtag} tweets]:thumbsup:**")
    st.write(df)
    st.write("**:green[Choose Any options from below]**")
    
    # Button in horizontal order
    b2 , b3, b4 = st.columns([43,40,30]) 
    # GUI-Button2  - To upload the data to mongoDB database
    if b2.button("Upload to MongoDB"):
            try:
                col.delete_many({})
                col.insert_one(scr_data)
                b2.success('Upload to MongoDB Successfully:thumbsup:')
            except:
                b2.error('Please try again after Submiting the Hashtag or keyword') 

    # GUI-Button3 - To download data as CSV
    if b3.download_button(label= "Download CSV",
                            data= csv,
                            file_name= f'{Hashtag}_tweets.csv',
                            mime= 'text/csv'
                            ):
                b3.success('CSV Downloaded Successfully:thumbsup:')


    # GUI-Button4 - To download data as JSON
    if b4.download_button(label= "Download JSON",
                        data= json,
                        file_name= f'{Hashtag}_tweets.json',
                        mime= 'text/csv'
                        ):
            b4.success('JSON Downloaded Successfully:thumbsup:')

To run the app, Navigate to the folder which app is present using CLI and run the command

streamlit run tweets.py

Future Improvements

  • Expand the project to scrape data from other social media platforms
  • Add authentication to the GUI to ensure data privacy
  • List of available Hashtags present in database
The project code follows the PEP 8 coding standards with detailed information on the project's workflow and execution.