tmbr
(pronounced timber) is an R package to facilitate analyses using
Template Model Builder (TMB
). It is
part of the mbr family of
packages.
library(magrittr)
library(ggplot2)
library(mbr)
library(tmbr)
model <- model("#include <TMB.hpp>
template<class Type>
Type objective_function<Type>::operator() () {
DATA_VECTOR(Pairs);
DATA_VECTOR(Year);
DATA_FACTOR(Annual);
DATA_INTEGER(nAnnual);
PARAMETER(alpha);
PARAMETER(beta1);
PARAMETER(beta2);
PARAMETER(beta3);
PARAMETER_VECTOR(bAnnual);
PARAMETER(log_sAnnual);
Type sAnnual = exp(log_sAnnual);
vector<Type> ePairs = Pairs;
Type nll = 0.0;
for(int i = 0; i < nAnnual; i++){
nll -= dnorm(bAnnual(i), Type(0), sAnnual, true);
}
for(int i = 0; i < Pairs.size(); i++){
ePairs(i) = exp(alpha + beta1 * Year(i) + beta2 * pow(Year(i), 2) + beta3 * pow(Year(i), 3) + bAnnual(Annual(i)));
nll -= dpois(Pairs(i), ePairs(i), true);
}
ADREPORT(sAnnual)
return nll;
}")
# add R code to calculate derived parameters
model %<>% update_model(new_expr = "
for (i in 1:length(Pairs)) {
log(prediction[i]) <- alpha + beta1 * Year[i] + beta2 * Year[i]^2 + beta3 * Year[i]^3 + bAnnual[Annual[i]]
}")
# define data types and center year
model %<>% update_model(
gen_inits = function(data) list(alpha = 4, beta1 = 1, beta2 = 0, beta3 = 0, log_sAnnual = 0, bAnnual = rep(0, data$nAnnual)),
select_data = list("Pairs" = integer(), "Year*" = integer(), Annual = factor()),
random_effects = list(bAnnual = "Annual"))
data <- bauw::peregrine
data$Annual <- factor(data$Year)
analysis <- analyse(model, data = data)
#> Note: Using Makevars in /Users/joe/.R/Makevars
#> using C++ compiler: 'Apple clang version 14.0.3 (clang-1403.0.22.14.1)'
#> using SDK: ''
#> # A tibble: 1 × 5
#> n K logLik IC converged
#> <int> <int> <dbl> <dbl> <lgl>
#> 1 40 5 -154. 321. TRUE
#> Warning: 4 external pointers will be removed
coef(analysis)
#> # A tibble: 5 × 8
#> term estimate lower upper svalue sd zscore pvalue
#> <term> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 alpha 4.26 4.19 4.34 1 0.0379 112. 0
#> 2 beta1 1.19 1.05 1.33 1 0.0697 17.1 2.10e-65
#> 3 beta2 -0.0177 -0.0743 0.0390 1 0.0289 -0.611 5.41e- 1
#> 4 beta3 -0.272 -0.342 -0.202 1 0.0357 -7.62 2.63e-14
#> 5 log_sAnnual -2.31 -2.84 -1.78 1 0.271 -8.53 1.45e-17
year <- predict(analysis, new_data = "Year")
ggplot(data = year, aes(x = Year, y = estimate)) +
geom_point(data = bauw::peregrine, aes(y = Pairs)) +
geom_line() +
expand_limits(y = 0)
To install from GitHub
install.packages("devtools")
devtools::install_github("poissonconsulting/tmbr")
To cite tmbr in publications use:
Joe Thorley (2018) tmbr: Analyses Using TMB. doi:
https://doi.org/10.5281/zenodo.1162374.
A BibTeX entry for LaTeX users is
@Misc{,
author = {Joe Thorley},
year = {2018},
title = {tmbr: Analyses Using TMB},
doi = {https://doi.org/10.5281/zenodo.1162374},
}
Please also cite TMB.
Please report any issues.
Pull requests are always welcome.
Please note that the tmbr project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.