forked from codeslake/DMENet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
executable file
·272 lines (211 loc) · 9.66 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import tensorflow as tf
import tensorlayer as tl
from tensorlayer.prepro import *
from config import config, log_config
from skimage import feature
from skimage import color
from scipy.ndimage.filters import gaussian_filter
import scipy
import numpy as np
import cv2
import math
import random
import os
import fnmatch
def read_all_imgs(file_name_list, path = '', mode = 'RGB'):
imgs = []
for idx in range(0, len(file_name_list)):
imgs.append(get_images(file_name_list[idx], path, mode))
return imgs
def get_images(file_name, path, mode):
""" Input an image path and name, return an image array """
# return scipy.misc.imread(path + file_name).astype(np.float)
if mode is 'RGB':
image = (scipy.misc.imread(path + file_name, mode='RGB')/255.).astype(np.float32)
elif mode is 'GRAY':
image = (scipy.misc.imread(path + file_name, mode='P')/255.).astype(np.float32)
image = np.expand_dims(image, axis = 2)
elif mode is 'NPY':
image = np.load(path + file_name)
image = image / 3.275
image = np.expand_dims(image, axis = 2)
elif mode is 'DEPTH':
image = (np.float32(cv2.imread(path + file_name, cv2.IMREAD_UNCHANGED))/10.)[:, :, 1]
## If you train the network with the SYNDOF dataset (thi is the original SYNDOF dataset) shared in this repository.
## The SYNDOF's max COC is 15 and we saved the defocus map with the COC value.
## The paper said max_coc is 28, which is becuase the orignal SYNDOF visually had maximaum coc of 28 when it was generated with max_coc=15.
image = image / 15
## If you train the network with the new SYNDOF dataset generated with the codes in "https://github.com/codeslake/SYNDOF".
## We save the sigma value (max=7) in the code.
## sigma = max_coc-1/4, when max_coc = 29, max_sigma = 7
# image = image / 7
image = np.expand_dims(image, axis = 2)
return image
def t_or_f(arg):
ua = str(arg).upper()
if 'TRUE'.startswith(ua):
return True
elif 'FALSE'.startswith(ua):
return False
else:
pass
def _tf_fspecial_gauss(size, sigma):
"""Function to mimic the 'fspecial' gaussian MATLAB function
"""
x_data, y_data = np.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1]
x_data = np.expand_dims(x_data, axis=-1)
x_data = np.expand_dims(x_data, axis=-1)
y_data = np.expand_dims(y_data, axis=-1)
y_data = np.expand_dims(y_data, axis=-1)
x = tf.constant(x_data, dtype=tf.float32)
y = tf.constant(y_data, dtype=tf.float32)
g = tf.exp(-((x**2 + y**2)/(2.0*sigma**2)))
return g / tf.reduce_sum(g)
def refine_image(img):
h, w = img.shape[:2]
return img[0 : h - h % 16, 0 : w - w % 16]
def random_crop(images, resize_shape, is_gaussian_noise = False):
images_list = None
h, w = resize_shape[:2]
max_size_limit = 800
for i in np.arange(len(images)):
image = np.copy(images[i])
shape = np.array(image.shape[:2])
if shape.min() <= h:
ratio = resize_shape[shape.argmin()]/float(shape.min())
resize_w = int(math.floor(shape[1] * ratio)) + 1
resize_h = int(math.floor(shape[0] * ratio)) + 1
image = cv2.resize(image, (resize_w, resize_h))
if shape.min() > max_size_limit:
ratio = max_size_limit/float(shape.min())
resize_w = int(math.floor(shape[1] * ratio)) + 1
resize_h = int(math.floor(shape[0] * ratio)) + 1
image = cv2.resize(image, (resize_w, resize_h))
if is_gaussian_noise:
image = add_gaussian_noise(image)
cropped_image = tl.prepro.crop(image, wrg=w, hrg=h, is_random=True)
augmented_image = _random_flip(cropped_image)
angles = np.array([1, 2, 3, 4])
angle = np.random.choice(angles)
augmented_image = _random_rotation(augmented_image, angle)
image = np.expand_dims(augmented_image, axis=0)
images_list = np.copy(image) if i == 0 else np.concatenate((images_list, image), axis = 0)
return images_list
def crop_pair_with_different_shape_images(images, labels, resize_shape, is_gaussian_noise = False):
images_list = None
labels_list = None
h, w = resize_shape[:2]
max_size_limit = 800
for i in np.arange(len(images)):
image = np.copy(images[i])
label = np.copy(labels[i])
shape = np.array(image.shape[:2])
if shape.min() <= h:
ratio = resize_shape[shape.argmin()]/float(shape.min())
resize_w = int(math.floor(shape[1] * ratio)) + 1
resize_h = int(math.floor(shape[0] * ratio)) + 1
image = cv2.resize(image, (resize_w, resize_h))
label = np.expand_dims(cv2.resize(label[:, :, 0], (resize_w, resize_h)), axis = 2)
if shape.min() > max_size_limit:
ratio = max_size_limit/float(shape.min())
resize_w = int(math.floor(shape[1] * ratio)) + 1
resize_h = int(math.floor(shape[0] * ratio)) + 1
image = cv2.resize(image, (resize_w, resize_h))
label = np.expand_dims(cv2.resize(label[:, :, 0], (resize_w, resize_h)), axis = 2)
if is_gaussian_noise:
image = add_gaussian_noise(image)
concatenated_images = np.concatenate((image, label), axis = 2)
cropped_images = tl.prepro.crop(concatenated_images, wrg=w, hrg=h, is_random=True)
augmented_images = _random_flip(cropped_images)
angles = np.array([1, 2, 3, 4])
angle = np.random.choice(angles)
augmented_images = _random_rotation(augmented_images, angle)
image = np.expand_dims(augmented_images[:, :, 0:3], axis=0)
label = np.expand_dims(np.expand_dims(augmented_images[:, :, 3], axis=3), axis=0)
images_list = np.copy(image) if i == 0 else np.concatenate((images_list, image), axis = 0)
labels_list = np.copy(label) if i == 0 else np.concatenate((labels_list, label), axis = 0)
return images_list, labels_list
def add_gaussian_noise(image):
image = image.astype(np.float32)
shape = image.shape[:2]
mean = 0
var = random.uniform(0,0.1)
sigma = var ** 0.5
gamma = 0.25
alpha = 0.75
beta = 1 - alpha
gaussian = np.random.normal(loc=mean, scale = sigma, size = (shape[0], shape[1], 1)).astype(np.float32)
gaussian = np.concatenate((gaussian, gaussian, gaussian), axis = 2)
#gaussian_img = image * 0.75 + 0.25 * gaussian + 0.25
gaussian_img = cv2.addWeighted(image, alpha, beta * gaussian, beta, gamma)
return gaussian_img
# noise_sigma = 0.01
# h = image.shape[0]
# w = image.shape[1]
# noise = np.random.randn(h, w) * noise_sigma
# noisy_image = np.zeros(image.shape, np.float64)
# if len(image.shape) == 2:
# noisy_image = image + noise
# else:
# noisy_image[:,:,0] = image[:,:,0] + noise
# noisy_image[:,:,1] = image[:,:,1] + noise
# noisy_image[:,:,2] = image[:,:,2] + noise
# """
# print('min,max = ', np.min(noisy_image), np.max(noisy_image))
# print('type = ', type(noisy_image[0][0][0]))
# """
# return noisy_image
def _random_flip(images):
flipped_images = tl.prepro.flip_axis(images, axis=0, is_random=True)
return flipped_images
def _random_rotation(images, angle):
if angle != 4:
rotated_images = np.rot90(images, angle)
else:
rotated_images = images
return rotated_images
def _get_file_path(path, regex):
file_path = []
for root, dirnames, filenames in os.walk(path):
for i in np.arange(len(regex)):
for filename in fnmatch.filter(filenames, regex[i]):
file_path.append(os.path.join(root, filename))
return file_path
def remove_file_end_with(path, regex):
file_paths = _get_file_path(path, [regex])
for i in np.arange(len(file_paths)):
os.remove(file_paths[i])
def save_images(images, size, image_path='_temp.png'):
if len(images.shape) == 3: # Greyscale [batch, h, w] --> [batch, h, w, 1]
images = images[:, :, :, np.newaxis]
def merge(images, size):
h, w = images.shape[1], images.shape[2]
img = np.zeros((h * size[0], w * size[1], 3))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[j * h:j * h + h, i * w:i * w + w, :] = image
return img
def imsave(images, size, path):
return scipy.misc.toimage(merge(images, size), cmin = 0., cmax = 1.).save(path)
assert len(images) <= size[0] * size[1], "number of images should be equal or less than size[0] * size[1] {}".format(len(images))
return imsave(images, size, image_path)
def fix_image_tf(image, norm_value):
return tf.cast(image / norm_value * 255., tf.uint8)
def norm_image_tf(image):
image = image - tf.reduce_min(image, axis = [1, 2, 3], keepdims=True)
image = image / tf.reduce_max(image, axis = [1, 2, 3], keepdims=True)
return tf.cast(image * 255., tf.uint8)
def norm_image(image, axis = (1, 2, 3)):
image = image - np.amin(image, axis = axis, keepdims=True)
image = image / np.amax(image, axis = axis, keepdims=True)
return image
def get_disc_accuracy(logits, labels):
acc = 0.
for i in np.arange(len(logits)):
tp = 0
logits[i] = np.round(np.squeeze(logits[i])).astype(int)
temp = logits[i]
tp = tp + len(temp[np.where(temp == labels[i])])
acc = acc + (tp / float(len(logits[i])))
return acc / float(len(labels))