-
Notifications
You must be signed in to change notification settings - Fork 2
/
Run_SOVAP.py
350 lines (285 loc) · 21.1 KB
/
Run_SOVAP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import argparse
import os
import subprocess
import time
import sys
import subprocess
from collections import defaultdict
import base64
HELP_MESSAGE = "\033[32mSOVAP: Soil Virome Analysis Pipeline v.1.3\033[0m\n\n\033[33mThis pipeline utilizes a suite of state-of-the-art tools for processing, analysis, and annotation of viromics and metagenomics data\033[0m\n"
def run_fastp(input_r1, input_r2, output_r1, output_r2, output_ru1, output_ru2, threads):
# Creating output directory
output_dir = "1_Fastp_Output"
output_dir2 = "1_Fastp_Report"
os.makedirs(output_dir, exist_ok=True)
os.makedirs(output_dir2, exist_ok=True)
# Creating log directory
log_dir = "0_Logs"
os.makedirs(log_dir, exist_ok=True)
# Defining the command to run Fastp
command = f"fastp -i {input_r1} -I {input_r2} -o {output_dir}/{output_r1} -O {output_dir}/{output_r2} --unpaired1 {output_dir}/{output_ru1} --unpaired2 {output_dir}/{output_ru2} -h {output_dir2}/fastp.html -j {output_dir2}/fastp.json -w {threads} --detect_adapter_for_pe -3 --cut_window_size=1 --cut_mean_quality=15 --correction"
# Running Fastp and capturing stdout and stderr
start_time = time.time()
with open(f"{log_dir}/fastp.stdout.log", "w") as stdout_file, open(f"{log_dir}/fastp.stderr.log", "w") as stderr_file:
process = subprocess.Popen(command, stdout=stdout_file, stderr=stderr_file, shell=True)
process.wait()
end_time = time.time()
# Printing the execution time and returning the output files
print(f"\033[92mFastp completed in {end_time - start_time:.2f} seconds.\033[0m")
return f"{output_dir}/{output_r1}", f"{output_dir}/{output_r2}", f"{output_dir}/{output_ru1}", f"{output_dir}/{output_ru2}"
def run_centrifuge(input_file1, input_file2, input_file3, input_file4, output_file1, output_file2, output_file3, output_file4, centrifuge_db, threads):
# Creating output directory
output_dir = "2_Centrifuge_Output"
output_dir2 = "2_CleanReads"
os.makedirs(output_dir, exist_ok=True)
os.makedirs(output_dir2, exist_ok=True)
# Creating log directory
log_dir = "0_Logs"
os.makedirs(log_dir, exist_ok=True)
# Defining the command to run Centrifuge
command = f"centrifuge -x {centrifuge_db} -1 {input_file1} -2 {input_file2} -U {input_file3} -U {input_file4} --report-file {output_dir}/{output_file1} -S {output_dir}/{output_file2} --un-conc-gz {output_dir2}/{output_file3} --un-gz {output_dir2}/{output_file4} --min-hitlen 50 --threads {threads}"
# Running Centrifuge and capturing stdout and stderr
start_time = time.time()
with open(f"{log_dir}/centrifuge.stdout.log", "w") as stdout_file, open(f"{log_dir}/centrifuge.stderr.log", "w") as stderr_file:
process = subprocess.Popen(command, stdout=stdout_file, stderr=stderr_file, shell=True)
process.wait()
end_time = time.time()
# Printing the execution time
print(f"\033[92mCentrifuge completed in {end_time - start_time:.2f} seconds.\033[0m")
def run_mega(input_file1, input_file2, input_file3, threads):
# Creating output directory
# Creating log directory
log_dir = "0_Logs"
os.makedirs(log_dir, exist_ok=True)
# Defining the command to run Megahit
command = f"megahit -1 {input_file1} -2 {input_file2} -r {input_file3} --presets meta-large -o 3_Megahit_Output -t {threads} --min-contig-len 150"
# Running Megahit and capturing stdout and stderr
start_time = time.time()
with open(f"{log_dir}/megahit.stdout.log", "w") as stdout_file, open(f"{log_dir}/megahit.stderr.log", "w") as stderr_file:
process = subprocess.Popen(command, stdout=stdout_file, stderr=stderr_file, shell=True)
process.wait()
end_time = time.time()
# Printing the execution time
print(f"\033[92mMegahit completed in {end_time - start_time:.2f} seconds.\033[0m")
def run_geno(input_file1, genomad_db, threads):
# Creating output directory
# Creating log directory
log_dir = "0_Logs"
os.makedirs(log_dir, exist_ok=True)
# Defining the command to run geNomad
#(use --disable-nn-classification to run faster)
command = f"genomad end-to-end --cleanup -t {threads} -s 7.0 {input_file1} 4_geNomad_Output {genomad_db}"
# Running geNomad and capturing stdout and stderr
start_time = time.time()
with open(f"{log_dir}/geNomad.stdout.log", "w") as stdout_file, open(f"{log_dir}/geNomad.stderr.log", "w") as stderr_file:
process = subprocess.Popen(command, stdout=stdout_file, stderr=stderr_file, shell=True)
process.wait()
end_time = time.time()
# Printing the execution time
print(f"\033[92mgeNomad completed in {end_time - start_time:.2f} seconds.\033[0m")
def run_diamond(input_file1, diamond_db, output, un, al, threads):
# Creating output directory
output_dir = "6_Diamond-Taxonomy"
os.makedirs(output_dir, exist_ok=True)
# Creating log directory
log_dir = "0_Logs"
os.makedirs(log_dir, exist_ok=True)
# Defining the command to run DIAMOND
command = f"diamond blastx -q {input_file1} -d {diamond_db} -o {output_dir}/{output} -f 6 qseqid sseqid pident length mismatch gapopen qstart qend sstart send qlen slen stitle evalue bitscore -k 1 --sensitive -p {threads} --alfmt fasta --al {output_dir}/{al} --unfmt fasta --un {output_dir}/{un}"
# Running DIAMOND and capturing stdout and stderr
start_time = time.time()
with open(f"{log_dir}/diamond.stdout.log", "w") as stdout_file, open(f"{log_dir}/diamond.stderr.log", "w") as stderr_file:
process = subprocess.Popen(command, stdout=stdout_file, stderr=stderr_file, shell=True)
process.wait()
end_time = time.time()
# Printing the execution time
print(f"\033[92mDiamond on IMG/VR completed in {end_time - start_time:.2f} seconds.\033[0m")
def run_diamegan(input_file1, diamond_db, output, un, al, megan_db, threads):
# Creating output directory
output_dir = "6_Diamond_Megan"
os.makedirs(output_dir, exist_ok=True)
# Creating log directory
log_dir = "0_Logs"
os.makedirs(log_dir, exist_ok=True)
# Defining the command to run Diamond+Megan
command1 = f"diamond blastx -q {input_file1} -d {diamond_db} -o {output_dir}/{output} -f 100 -k 1 --sensitive -p {threads} --alfmt fasta --al {output_dir}/{al} --unfmt fasta --un {output_dir}/{un}"
command2 = f"daa-meganizer -i {output_dir}/{output} -t {threads} -mdb {megan_db}"
command = f"{command1}; {command2}"
# Running D-M and capturing stdout and stderr
start_time = time.time()
with open(f"{log_dir}/Diamond-Megan.stdout.log", "w") as stdout_file, open(f"{log_dir}/Diamond-Megan.stderr.log", "w") as stderr_file:
process = subprocess.Popen(command, stdout=stdout_file, stderr=stderr_file, shell=True)
process.wait()
end_time = time.time()
# Printing the execution time
print(f"\033[92mDiamond + Megan completed in {end_time - start_time:.2f} seconds.\033[0m")
def run_tpm(input_file1, mem, threads):
# Creating output directory
output_dir = "5_Clusters_Abundance"
os.makedirs(output_dir, exist_ok=True)
# Creating output directory
# Creating log directory
log_dir = "0_Logs"
os.makedirs(log_dir, exist_ok=True)
# Defining the command to run TPM and CD-HIT
command1 = f"seqkit seq -m 500 {input_file1} -o 5_Clusters_Abundance/virus_contig_500.fa -j {threads}"
command2 = f"cd-hit-est -i 5_Clusters_Abundance/virus_contig_500.fa -c 0.95 -n 10 -aS 0.85 -T {threads} -M {mem} -o 5_Clusters_Abundance/virus_contig_500_clustered.fasta"
command3 = f"cat 1_Fastp_Output/* > 1_Fastp_Output/Cat_Trimmed.fq.gz"
command4 = f"bwa index 5_Clusters_Abundance/virus_contig_500_clustered.fasta"
command5 = f"bwa mem -t {threads} 5_Clusters_Abundance/virus_contig_500_clustered.fasta 1_Fastp_Output/Cat_Trimmed.fq.gz -o 5_Clusters_Abundance/mapped.sam"
command6 = f"samtools sort --threads {threads} -O SAM 5_Clusters_Abundance/mapped.sam -o 5_Clusters_Abundance/sorted.mapped.sam"
command7 = f"rm 5_Clusters_Abundance/mapped.sam"
command = f"{command1}; {command2}; {command3}; {command4}; {command5}; {command6}; {command7}"
# Running TPM and CD-HIT and capturing stdout and stderr
start_time = time.time()
with open(f"{log_dir}/Clusters_Abundance.stdout.log", "w") as stdout_file, open(f"{log_dir}/Clusters_Abundance.log", "w") as stderr_file:
process = subprocess.Popen(command, stdout=stdout_file, stderr=stderr_file, shell=True)
process.wait()
end_time = time.time()
# Printing the execution time
print(f"\033[92mClustering and mapping completed in {end_time - start_time:.2f} seconds.\033[0m")
def calc_abundance(sam_file):
# Define the counts dictionary to store the read counts for each contig
counts = defaultdict(int)
# Get the length of each contig from the SAM file using samtools
contig_lengths = {}
with subprocess.Popen(['samtools', 'view', '-H', sam_file], stdout=subprocess.PIPE) as proc:
for line in proc.stdout:
if line.startswith(b'@SQ'):
fields = line.decode().split('\t')
contig_id = fields[1].split(':')[1]
contig_len = int(fields[2].split(':')[1])
contig_lengths[contig_id] = contig_len
# Parse the SAM file with samtools to count the reads mapped to each contig
with subprocess.Popen(['samtools', 'idxstats', sam_file], stdout=subprocess.PIPE) as proc:
for line in proc.stdout:
fields = line.decode().split('\t')
contig_id = fields[0]
if contig_id not in contig_lengths:
continue
contig_len = contig_lengths[contig_id]
count = int(fields[2])
counts[contig_id] = count
# Calculate the total count per million
cpm_factor = 1e6 / sum(counts.values())
tpm_factor = 1e6 / sum([count/contig_lengths[contig_id] for contig_id, count in counts.items()])
fpkm_factor = 1e9 / sum(counts.values())
# Write the abundance values to a file
with open('5_Clusters_Abundance/abundance.tsv', 'w') as outfile:
outfile.write('contig_id\tcount\tcpm\ttpm\tfpkm\tlength\n')
for contig_id, count in counts.items():
# Calculate the CPM value
cpm = count * cpm_factor
# Calculate the TPM value
tpm = count / contig_lengths[contig_id] * tpm_factor
# Calculate the FPKM value
fpkm = (count / contig_lengths[contig_id]) * fpkm_factor
# Write the abundance values for the contig to the file
outfile.write(f'{contig_id}\t{count}\t{cpm:.2f}\t{tpm:.2f}\t{fpkm:.2f}\t{contig_lengths[contig_id]}\n')
base64_str = "XG5CeSBBYmRvbmFzZXIgUG91cnNhbGF2YXRpXG5Eci4gRmFsbCBWaXJvbG9neSBsYWIgMjAyMiAtIDIwMjNcblxuXDAzM1s5MW1BZ3JpY3VsdHVyZSBhbmQgQWdyaS1Gb29kIENhbmFkYSAoQUFGQylcbkFncmljdWx0dXJlIGV0IEFncm9hbGltZW50YWlyZSBDYW5hZGEgKEFBQylcMDMzWzBtXG5cMDMzWzk2bUFiZG9uYXNlci5Qb3Vyc2FsYXZhdGlAYWdyLmdjLmNhXDAzM1swbVxuXG5cMDMzWzkybUJpb2xvZ3kgRGVwYXJ0bWVudCwgVW5pdmVyc2l0ZSBkZSBTaGVyYnJvb2tlIChVZFMpXDAzM1swbVxuXDAzM1s5Nm1Qb3Vyc2FsYXZhdGkuQWJkb25hc2VyQFVzaGVyYnJvb2tlLmNhXDAzM1swbVxuXHQ="
version_str = base64.b64decode(base64_str).decode('unicode_escape')
base64_str3 = "4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paE4paECuKWiOKWiOKWkeKWhOKWhOKWhOKWkeKWiOKWiOKWkeKWhOKWhOKWhOKWkeKWiOKWiOKWkeKWiOKWiOKWiOKWkeKWiOKWkeKWhOKWhOKWgOKWiOKWiOKWkeKWhOKWhOKWkeKWiOKWiArilojilojiloTiloTiloTiloDiloDilojilojilpHilojilojilojilpHilojilojilojilpHilojilpHilojilojilpHiloDiloDilpHilojilojilpHiloDiloDilpHilojilogK4paI4paI4paR4paA4paA4paA4paR4paI4paI4paR4paA4paA4paA4paR4paI4paI4paI4paE4paA4paE4paI4paI4paR4paI4paI4paR4paI4paI4paR4paI4paI4paI4paI4paICuKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgOKWgA=="
so = base64.b64decode(base64_str3).decode()
base64_str2 = "4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGACuKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKivuKjv+KhhuKhgOKhgOKhgOKhgOKisOKjtuKhhuKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgArioYDioYDioYDioYDioYDioYDioYDioYDioYDioYDioYDioYDio6DioYTioIjio7/ioYHioYDioLjioZ/ioYDiorjioZ/ioIHiooDioYDioYDioYDioYDioYDioYDioYDiorjio7/ioYDioYDioYDioYDioYDioYDioYAK4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qKg4qO/4qO/4qGA4qGA4qKI4qOj4qOk4qG/4qC34qC/4qC/4qC/4qC24qC+4qKm4qOE4qO84qCB4qGA4qGA4qGA4qGA4qGA4qGA4qK44qO/4qGA4qGA4qGA4qGA4qGA4qGA4qGACuKhgOKhgOKhgOKhgOKhgOKhgOKhgOKjgOKgiOKgmeKjt+KjtuKgn+Kgi+KhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKgieKggeKhgOKhgOKhgOKhgOKhgOKhgOKiuOKjv+KhgOKhgOKhgOKhgOKhgOKhgOKhgArioYDioYDioYDio6Dio6TioYDioIjioJviorPio77ioJ/ioIHiorjio7/io7/io7/io7/io7/io7/io7/io7/io7/io7/io7/io7/ioYfioYDioYDioYDioYDioYDioYDiorjio7/ioYDioYDioYDioYDioYDioYDioYAK4qGA4qGA4qGA4qC74qC/4qC34qOk4qOk4qG/4qCB4qGA4qGA4qK44qO/4qO/4qO/4qGf4qCb4qCb4qCb4qCb4qCb4qCb4qCb4qCb4qCD4qGA4qGA4qGA4qGA4qGA4qGA4qC44qC/4qC24qC24qC24qC24qCG4qGA4qGACuKhgOKhgOKhgOKhgOKjpOKjhOKjoOKjv+KggeKhgOKhgOKhgOKiuOKjv+Kjv+Kjv+Khh+KhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKjoOKjpOKjpOKjpOKhgOKhgOKhgOKhgArioYDioYDiooDio4DioInioIHiorjioYfioYDioYDioYDioYDiorjio7/io7/io7/io7fio7bio7bio7bio7bio7bio7bio7bioYDioYDioYDioYDioYDioYDioYDioYDioYDioInioIHioYDioonio7/ioYbioYDioYAK4qGA4qGA4qK/4qO/4qC34qC24qK/4qGH4qGA4qGA4qGA4qGA4qK44qO/4qO/4qO/4qG/4qC/4qC/4qC/4qC/4qC/4qC/4qC/4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qKg4qG+4qCb4qCL4qCJ4qO/4qGH4qGA4qGACuKhgOKhgOKhgOKhgOKjoOKjpOKivOKjt+KhgOKhgOKhgOKhgOKiuOKjv+Kjv+Kjv+Khh+KhgOKhgOKhgOKhgOKjtuKhgOKjtuKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKiu+Kjp+KjgOKjgOKjoOKjv+Khh+KhgOKhgArioYDioYDioYDioYDioInioIHioYDiorvio6bioYDioYDioYDiorjio7/io7/io7/ioYfioLrio5vio7/ioYDio7/ioYDio7/ioYDioYDioYDioYDioYDioYDioYDioYDioYDioInioInioInioIHioInioIHioYDioYAK4qGA4qGA4qGA4qKg4qO24qO24qG24qCb4qC74qOn4qGA4qGA4qK44qO/4qO/4qO/4qGH4qO/4qOp4qO/4qGA4qO/4qGA4qO/4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qK44qGH4qGA4qGA4qGA4qGA4qGA4qGA4qGACuKhgOKhgOKhgOKgiOKgm+Kgi+KhgOKjpOKhnuKgmeKiv+KjpuKjjOKgieKgieKgieKggeKgiOKggeKgiOKhgOKgieKhgOKgieKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKiuOKjh+KjoOKjtOKjpuKjhOKhgOKhgOKhgArioYDioYDioYDioYDioYDioYDioYDioIniooDio6Diob7ioIvioLviob/io7bio7bio6Tio6Tio4Tio4Dio6Dio6Tio6Tio7bioJbioYDioYDioYDioYDioYDioYDioYDiorjioY/ioIHioYDioYDiorvio4fioYDioYAK4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qGA4qO/4qO/4qCB4qKg4qO+4qGA4qGA4qKI4qG/4qCJ4qK/4qCJ4qCZ4qO/4qGA4qCI4qOm4qGE4qGA4qGA4qGA4qGA4qGA4qGA4qK44qGH4qGA4qGA4qGA4qK44qG/4qGA4qGACuKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKioOKjvuKhh+KhgOKgv+KghuKhgOKjv+Kjp+KhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKhgOKiuOKjp+KjhOKjgOKjpOKhv+Kgg+KhgOKhgArioYDioYDioYDioYDioYDioYDioYDioYDioYDioYDioYDioYDioYDioYDioIjioJvioIPioYDioYDioYDioYDioJvioJvioYDioYDioYDioYDioYDioYDioYDioYDioYDioYDioYDioIjioInioIHioYDioYDioYDioYAKCiA="
lo_str = base64.b64decode(base64_str2).decode()
epi="\033[91mFor updated versions and information, please visit:\033[0m \033[92mhttps://github.com/poursalavati/SOVAP \033[0m\n\033[91mIf you find SOVAP useful, please kindly cite:\033[0m\033[92m DOI.org/10.5281/zenodo.7700081\033[0m\n\033[91mFor questions and bugs please contact:\033[0m \033[92mAbdonaser.Poursalavati@agr.gc.ca\033[0m"
def main():
print(so)
print(HELP_MESSAGE)
# Parsing arguments
parser = argparse.ArgumentParser(description="SOVAP Help Menu", formatter_class=argparse.RawTextHelpFormatter, epilog=epi)
parser.add_argument("-r1", "--read1", metavar="", required=True, help="Path to R1 FASTQ file")
parser.add_argument("-r2", "--read2", metavar="", required=True, help="Path to R2 FASTQ file")
parser.add_argument("-x", "--centrifuge_db", metavar="", required=True, help="Path to the Centrifuge database")
parser.add_argument("-g", "--geNomad_db", metavar="", required=True, help="Path to the geNomad database")
parser.add_argument("-d", "--diamond_db", metavar="", required=True, help="Path to the Diamond database")
parser.add_argument("-md", "--megan_db", metavar="", help="Path to the Megan database")
parser.add_argument("-t", "--threads", metavar="", type=int, default=16, help="Number of threads to use (default: 16)")
parser.add_argument("-m", "--mem", metavar="", type=int, default=16000, help="MB of memory to use (default: 16000)")
parser.add_argument("--end_to_end", action="store_true", help="Run the entire pipeline end-to-end")
parser.add_argument("--megan", action="store_true", help="Run Diamond and Megan with NCBI db")
parser.add_argument('-v', '--version', action='version', version='{}\n{}\n'.format(version_str, lo_str), help='Print version, affiliation, and contact information')
args = parser.parse_args(args=None if sys.argv[1:] else ['--help'])
# Running the pipeline
if args.end_to_end:
tstart_time = time.time()
ttstart_time = time.time()
print("Running the pipeline end-to-end...")
# Running Fastp
print("\033[94m:::> Start Module 1: Trimming and pre-processing raw data <:::\033[0m")
# Check if output files exist
if not os.path.exists("1_Fastp_Output"):
# Run Fastp
fastp_output_r1, fastp_output_r2, fastp_output_ru1, fastp_output_ru2 = run_fastp(args.read1, args.read2, "output_r1.fastq.gz", "output_r2.fastq.gz", "output_ru1.fastq.gz", "output_ru2.fastq.gz", args.threads)
else:
print(f"Skipping this step because output already exists")
# Running Centrifuge
print("\033[94m:::> Start Module 2: Contamination subtraction <:::\033[0m")
# Check if output files exist
if not os.path.exists("2_CleanReads"):
# Run Centrifuge
run_centrifuge(fastp_output_r1, fastp_output_r2, fastp_output_ru1, fastp_output_ru2, "output.centrifuge.report", "output.centrifuge.tsv", "output.centrifuge_paired_%.fq.gz", "output.centrifuge_unpaired.fq.gz", args.centrifuge_db, args.threads)
else:
print(f"Skipping this step because output already exists")
# Running Megahit
print("\033[94m:::> Start Module 3: Assembly of cleaned reads <:::\033[0m")
# Check if output files exist
if not os.path.exists("3_Megahit_Output"):
run_mega("2_CleanReads/output.centrifuge_paired_1.fq.gz", "2_CleanReads/output.centrifuge_paired_2.fq.gz", "2_CleanReads/output.centrifuge_unpaired.fq.gz", args.threads)
else:
print(f"Skipping this step because output already exists")
# Running geNomad
print("\033[94m:::> Start Module 4: Identification of viral contigs <:::\033[0m")
# Check if output files exist
if not os.path.exists("4_geNomad_Output"):
run_geno("3_Megahit_Output/final.contigs.fa", args.geNomad_db, args.threads)
else:
print(f"Skipping this step because output already exists")
# Running Clustering and Mapping
print("\033[94m:::> Start Module 5: Clustering and mapping <:::\033[0m")
# Check if output files exist
if not os.path.exists("5_Clusters_Abundance"):
run_tpm("4_geNomad_Output/final.contigs_summary/final.contigs_virus.fna", args.mem, args.threads)
else:
print(f"Skipping this step because output already exists")
# Running Abundance
print("\033[94m:::> Start Module 5.1: Abundance and TPM estimation <:::\033[0m")
# Check if output files exist
if not os.path.exists("5_Clusters_Abundance/abundance.tsv"):
start_time = time.time()
calc_abundance("5_Clusters_Abundance/sorted.mapped.sam")
end_time = time.time()
# Printing the execution time
print(f"\033[92mAbundance estimation completed in {end_time - start_time:.2f} seconds.\033[0m")
else:
print(f"Skipping this step because output already exists")
# Running IMGVR diamond
if not args.megan:
print("\033[94m:::> Start Module 6: Taxonomy assignment <:::\033[0m")
# Check if output files exist
if not os.path.exists("6_Diamond-Taxonomy"):
run_diamond("5_Clusters_Abundance/virus_contig_500_clustered.fasta", args.diamond_db, "output.diamond.tsv", "unaligned.diamond.fa", "aligned.diamond.fa", args.threads)
ttend_time = time.time()
print(f"\n\033[92mSOVAP pipeline finished in {ttend_time - ttstart_time:.2f} seconds.\033[0m\nPlease look at '0_Logs' folder to access the logs of each step\n")
else:
print(f"Skipping this step because output already exists")
else:
# Running Diamond+Megan
print("\033[94m:::> Start Module 6: Diamond + Megan Analysis <:::\033[0m")
# Check if output files exist
if not os.path.exists("6_Diamond_Megan"):
# Run Diamond-Megan
run_diamegan("5_Clusters_Abundance/virus_contig_500_clustered.fasta", args.diamond_db, "output.diamond.daa", "unaligned.diamond.fa", "aligned.diamond.fa", args.megan_db, args.threads)
else:
print(f"Skipping this step because output already exists")
tend_time = time.time()
print(f"\n\033[92mSOVAP pipeline finished in {tend_time - tstart_time:.2f} seconds.\033[0m\nPlease look at '0_Logs' folder to access the logs of each step\n")
else:
# Running Fastp only
print("Running Fastp...")
fastp_output_r1, fastp_output_r2 = run_fastp(args.read1, args.read2, "output_r1.fastq", "output_r2.fastq", args.threads)
# Running Centrifuge only
print("Running Centrifuge...")
run_centrifuge(fastp_output_r1, "output.centrifuge.report", args.centrifuge_db, args.threads)
if __name__ == "__main__":
main()