conda create -n NoisyIC python=3.8 conda activate NoisyIC pip install -r requirement.txt
Note: torch, GPU and CUDA version need match!
Flickr3k: download1 or download2
SSID: download
the structure of image path
├── flickr3k
│ ├── 9964318083_6199f7ee20_b.jpg
│ ├── 9964619774_c10a0480df_b.jpg
│ ├── ...
├── SSID
│ ├── img0000.png
│ ├── img0000_gt.png
│ ├── img0001.png
│ ├── img0001_gt.png
├── ...
**Note: Your can originze your own dataset following above data structure. ** Or you can create your own rule to find the imags in the "data/dataset_load.py"
-
VGG19 pretrain model need to be downloaded link and please set it in the ./loss file
-
Pretrained model can be download through this link
python main.py --mode=train --train_img_dataset='./dataset/flickr3k' --train_real_dataset='./dataset/SSID' --model=MainCodec --lmbda=1 #[1, 5, 20, 50]
python main.py --mode=test --model=MainCodec --test_dataset_de=./noisy_images_path/ --test_dataset_gt=./clean_images_path/ --ckpt=''
python demo.py --ckpt=test --img_path="./ckpt.pth.tar" --img_save_path="./xx_decode.jpg" --bin_save_path="./xx_bitstream.bin"
@ARTICLE{Learning2022Zhang,
author={Zhang, Pingping and Wang, Meng and Chen, Baoliang and Lin, Rongqun and Wang, Xu and Wang, Shiqi and Kwong, Sam},
journal={IEEE Transactions on Circuits and Systems for Video Technology},
title={Learning-based Compression for Noisy Images in the Wild},
year={2022},
volume={},
number={},
pages={1-1}}