-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathflowlib.py
184 lines (155 loc) · 5.9 KB
/
flowlib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import re
import sys
def read_flo(filename):
with open(filename, 'rb') as f:
magic = np.fromfile(f, np.float32, count=1)
if 202021.25 != magic:
print('Magic number incorrect. Invalid .flo file')
else:
w = np.fromfile(f, np.int32, count=1)
h = np.fromfile(f, np.int32, count=1)
data = np.fromfile(f, np.float32, count=int(2*w*h))
# Reshape data into 3D array (columns, rows, bands)
data2D = np.resize(data, (h[0], w[0],2))
return data2D
def write_flo(filename, flow):
"""
write optical flow in Middlebury .flo format
:param flow: optical flow map
:param filename: optical flow file path to be saved
:return: None
"""
f = open(filename, 'wb')
magic = np.array([202021.25], dtype=np.float32)
(height, width) = flow.shape[0:2]
w = np.array([width], dtype=np.int32)
h = np.array([height], dtype=np.int32)
magic.tofile(f)
w.tofile(f)
h.tofile(f)
flow.tofile(f)
f.close()
def read_pfm(file):
file = open(file, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
header = header.decode('utf-8')
if header == 'PF':
color = True
elif header == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('utf-8'))
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().rstrip().decode('utf-8'))
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
data = data[:, :, :2]
return data
def write_pfm(file, image, scale=1):
file = open(file, 'wb')
color = None
if image.dtype.name != 'float32':
raise Exception('Image dtype must be float32.')
image = np.flipud(image)
if len(image.shape) == 3 and image.shape[2] == 3: # color image
color = True
elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale
color = False
else:
raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.')
file.write('PF\n' if color else 'Pf\n')
file.write('%d %d\n' % (image.shape[1], image.shape[0]))
endian = image.dtype.byteorder
if endian == '<' or endian == '=' and sys.byteorder == 'little':
scale = -scale
file.write('%f\n' % scale)
image.tofile(file)
def flow_to_color(flow, mask=None, max_flow=None):
"""Converts flow to 3-channel color image.
Args:
flow: tensor of shape [num_batch, height, width, 2].
mask: flow validity mask of shape [num_batch, height, width, 1].
"""
n = 8
num_batch, height, width, _ = tf.unstack(tf.shape(flow))
mask = tf.ones([num_batch, height, width, 1]) if mask is None else mask
flow_u, flow_v = tf.unstack(flow, axis=3)
if max_flow is not None:
max_flow = tf.maximum(tf.to_float(max_flow), 1.)
else:
max_flow = tf.reduce_max(tf.abs(flow * mask))
mag = tf.sqrt(tf.reduce_sum(tf.square(flow), 3))
angle = tf.atan2(flow_v, flow_u)
im_h = tf.mod(angle / (2 * np.pi) + 1.0, 1.0)
im_s = tf.clip_by_value(mag * n / max_flow, 0, 1)
im_v = tf.clip_by_value(n - im_s, 0, 1)
im_hsv = tf.stack([im_h, im_s, im_v], 3)
im = tf.image.hsv_to_rgb(im_hsv)
return im * mask
def flow_error_image(flow_1, flow_2, mask_occ, mask_noc=None, log_colors=True):
"""Visualize the error between two flows as 3-channel color image.
Adapted from the KITTI C++ devkit.
Args:
flow_1: first flow of shape [num_batch, height, width, 2].
flow_2: second flow (ground truth)
mask_occ: flow validity mask of shape [num_batch, height, width, 1].
Equals 1 at (occluded and non-occluded) valid pixels.
mask_noc: Is 1 only at valid pixels which are not occluded.
"""
mask_noc = tf.ones(tf.shape(mask_occ)) if mask_noc is None else mask_noc
diff_sq = (flow_1 - flow_2) ** 2
diff = tf.sqrt(tf.reduce_sum(diff_sq, [3], keepdims=True))
if log_colors:
num_batch, height, width, _ = tf.unstack(tf.shape(flow_1))
colormap = [
[0,0.0625,49,54,149],
[0.0625,0.125,69,117,180],
[0.125,0.25,116,173,209],
[0.25,0.5,171,217,233],
[0.5,1,224,243,248],
[1,2,254,224,144],
[2,4,253,174,97],
[4,8,244,109,67],
[8,16,215,48,39],
[16,1000000000.0,165,0,38]]
colormap = np.asarray(colormap, dtype=np.float32)
colormap[:, 2:5] = colormap[:, 2:5] / 255
mag = tf.sqrt(tf.reduce_sum(tf.square(flow_2), 3, keepdims=True))
error = tf.minimum(diff / 3, 20 * diff / mag)
im = tf.zeros([num_batch, height, width, 3])
for i in range(colormap.shape[0]):
colors = colormap[i, :]
cond = tf.logical_and(tf.greater_equal(error, colors[0]),
tf.less(error, colors[1]))
im = tf.where(tf.tile(cond, [1, 1, 1, 3]),
tf.ones([num_batch, height, width, 1]) * colors[2:5],
im)
im = tf.where(tf.tile(tf.cast(mask_noc, tf.bool), [1, 1, 1, 3]),
im, im * 0.5)
im = im * mask_occ
else:
error = (tf.minimum(diff, 5) / 5) * mask_occ
im_r = error # errors in occluded areas will be red
im_g = error * mask_noc
im_b = error * mask_noc
im = tf.concat(axis=3, values=[im_r, im_g, im_b])
return im